Skip to content

The source code for paper "Retrospective and Prospective Mixture-of-Generators for Task-oriented Dialogue Response Generation"

Notifications You must be signed in to change notification settings

Jiahuan-Pei/multiwoz-mdrg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RPMOG

To facilitate reproducibility, we release the source code for paper "Retrospective and Prospective Mixture-of-Generators for Task-oriented Dialogue Response Generation" on ECAI 2020.

Please contact me by email (j.pei@uva.nl) if any questions and cite our paper if you use any resources and/or codes in this repository.

Requirements

Python 3 with pip

Quick start

In repo directory:

Install the required packages

  • Using Conda:
cd multiwoz-mdrg
conda create --name multiwoz python=3.7 anaconda
source activate multiwoz
conda install --file requirements.txt 
conda install pytorch torchvision -c pytorch

Preprocessing

To download and pre-process the data run:

python multiwoz/Create_delex_data.py

For debugging

To debug train.py, you can add the following parameteres to save time --debug=True --emb_size=5 --hid_size_dec=5 --hid_size_enc=5 --hid_size_pol=5 --max_epochs=2

To debug test.py, the parameters are: --debug=True --no_models=2 --beam_width=2

Training

To train the model run:

python train.py [--args=value]

Some of these args include:

// hyperparamters for model learning
--max_epochs        : numbers of epochs
--batch_size        : numbers of turns per batch
--lr_rate           : initial learning rate
--clip              : size of clipping
--l2_norm           : l2-regularization weight
--dropout           : dropout rate
--optim             : optimization method

// network structure
--emb_size          : word vectors emedding size
--use_attn          : whether to use attention
--hid_size_enc      : size of RNN hidden cell
--hid_size_pol      : size of policy hidden output
--hid_size_dec      : size of RNN hidden cell
--cell_type         : specify RNN type

Testing

To evaluate the run:

python test.py [--args=value]

Hyperparamters

// hyperparamters for model learning
--max_epochs        : 20
--batch_size        : 64
--lr_rate           : 0.005
--clip              : 5.0
--l2_norm           : 0.00001
--dropout           : 0.0
--optim             : Adam

// network structure
--emb_size          : 50
--use_attn          : True
--hid_size_enc      : 150
--hid_size_pol      : 150
--hid_size_dec      : 150
--cell_type         : gru

About

The source code for paper "Retrospective and Prospective Mixture-of-Generators for Task-oriented Dialogue Response Generation"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published