This repository contains original codes and data in Machine-Learning-Enabled Virtual Screening For Inhibitors of Lysine-Specific Histone Demethylase 1.
- Python 3.7
- Numpy 1.19.2
- Pandas 1.1.3
- RDKit 2020.09.1.0
- scikit-learn 0.23.2
- matplotlib 3.3.2
- torch 1.9.0
- PyTorch Lightning 1.4.9
The screening dataset can be found in https://zinc.docking.org/substances/subsets/in-vitro/ . Please add the in-vitro.csv
file to ./ML-for-LSD1/screening_base/in-vitro_zinc/
directory.
data_cleansing.py
and dataset_construction.py
optimization.py
fitting.py
plot_learning_curves.py
and tsne.py
neural network.py
deploy.py
and deploy2.py
utils.py
, rdkit_utils.py
and nn_utils.py
I would like to thank Miss Yufan Liu from University of Surrey for her contribution in code validation and visualization.