-
Notifications
You must be signed in to change notification settings - Fork 75
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* WIP, add SparseVectorPolynomial * add SparseVector container * SparseVectorPolynomial needs zero(T) * NaN poisons, Inf propogates. No good rational, but ...
- Loading branch information
Showing
9 changed files
with
364 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
242 changes: 242 additions & 0 deletions
242
src/polynomial-container-types/mutable-sparse-vector-polynomial.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
""" | ||
MutableSparseVectorPolynomial{B,T,X} | ||
This polynomial type uses an `SparseVector{T,Int}` to store the coefficients of a polynomial relative to the basis `B` with indeterminate `X`. | ||
The type `T` should have `zero(T)` defined. | ||
""" | ||
struct MutableSparseVectorPolynomial{B,T,X} <: AbstractUnivariatePolynomial{B, T,X} | ||
coeffs::SparseVector{T, Int} | ||
function MutableSparseVectorPolynomial{B,T,X}(cs::SparseVector{S,Int}, order::Int=0) where {B,T,S,X} | ||
new{B,T,Symbol(X)}(cs) | ||
end | ||
end | ||
|
||
MutableSparseVectorPolynomial{B,T,X}(check::Val{:false}, coeffs::SparseVector{Int,S}) where {B,T,S,X} = | ||
MutableSparseVectorPolynomial{B,T,X}(coeffs) | ||
MutableSparseVectorPolynomial{B,T,X}(checked::Val{:true}, coeffs::SparseVector{Int,T}) where {B,T,X<:Symbol} = | ||
MutableSparseVectorPolynomial{B,T,X}(coeffs) | ||
|
||
# --- | ||
function MutableSparseVectorPolynomial{B,T}(coeffs::SparseVector{S,Int}, var::SymbolLike=Var(:x)) where {B,T,S} | ||
MutableSparseVectorPolynomial{B,T,Symbol(var)}(coeffs) | ||
end | ||
|
||
function MutableSparseVectorPolynomial{B}(cs::SparseVector{T,Int}, var::SymbolLike=Var(:x)) where {B,T} | ||
MutableSparseVectorPolynomial{B,T,Symbol(var)}(cs) | ||
end | ||
|
||
# From a Dictionary | ||
function MutableSparseVectorPolynomial{B,X}(cs::AbstractDict{Int, T}) where {B,T,X} | ||
N = maximum(keys(cs)) + 1 | ||
v = SparseVector(N, 1 .+ keys(cs), collect(values(cs))) | ||
MutableSparseVectorPolynomial{B,T,X}(v) | ||
end | ||
|
||
function MutableSparseVectorPolynomial{B}(cs::AbstractDict{Int, T}, var::SymbolLike=Var(:x)) where {B,T} | ||
MutableSparseVectorPolynomial{B,Symbol(var)}(cs) | ||
end | ||
|
||
|
||
# abstract vector has order/symbol | ||
function MutableSparseVectorPolynomial{B,T,X}(coeffs::AbstractVector{S}, order::Int=0) where {B,T,S,X} | ||
if Base.has_offset_axes(coeffs) | ||
@warn "ignoring the axis offset of the coefficient vector" | ||
coeffs = parent(coeffs) | ||
end | ||
|
||
MutableSparseVectorPolynomial{B,T,X}(convert(SparseVector, coeffs)) | ||
end | ||
|
||
|
||
# # cs iterable of pairs; ensuring tight value of T | ||
# function MutableSparseVectorPolynomial{B}(cs::Tuple, var::SymbolLike=:x) where {B} | ||
# isempty(cs) && throw(ArgumentError("No type attached")) | ||
# X = Var(var) | ||
# if length(cs) == 1 | ||
# c = only(cs) | ||
# d = Dict(first(c) => last(c)) | ||
# T = eltype(last(c)) | ||
# return MutableSparseVectorPolynomial{B,T,X}(d) | ||
# else | ||
# c₁, c... = cs | ||
# T = typeof(last(c₁)) | ||
# for b ∈ c | ||
# T = promote_type(T, typeof(b)) | ||
# end | ||
# ks = 0:length(cs)-1 | ||
# vs = cs | ||
# d = Dict{Int,T}(Base.Generator(=>, ks, vs)) | ||
# return MutableSparseVectorPolynomial{B,T,X}(d) | ||
# end | ||
# end | ||
|
||
constructorof(::Type{<:MutableSparseVectorPolynomial{B}}) where {B <: AbstractBasis} = MutableSparseVectorPolynomial{B} | ||
@poly_register MutableSparseVectorPolynomial | ||
|
||
function Base.map(fn, p::P, args...) where {B,T,X, P<:MutableSparseVectorPolynomial{B,T,X}} | ||
xs = map(fn, p.coeffs) | ||
R = eltype(xs) | ||
return MutableSparseVectorPolynomial{B, R, X}(xs) | ||
end | ||
|
||
function Base.map!(fn, q::Q, p::P, args...) where {B,T,X, P<:MutableSparseVectorPolynomial{B,T,X},S,Q<:MutableSparseVectorPolynomial{B,S,X}} | ||
map!(fn, p.coeffs, p.coeffs) | ||
nothing | ||
end | ||
|
||
## --- | ||
Base.collect(p::MutableSparseVectorPolynomial) = collect(p.coeffs) | ||
Base.collect(::Type{T}, p::MutableSparseVectorPolynomial) where {T} = collect(T, p.coeffs) | ||
minimumexponent(::Type{<:MutableSparseVectorPolynomial}) = 0 | ||
|
||
Base.length(p::MutableSparseVectorPolynomial) = length(p.coeffs) | ||
|
||
function degree(p::MutableSparseVectorPolynomial) | ||
idx = findall(!iszero, p.coeffs) | ||
isempty(idx) && return -1 | ||
n = maximum(idx) | ||
n - 1 | ||
end | ||
|
||
Base.copy(p::MutableSparseVectorPolynomial{B,T,X}) where {B,T,X} = MutableSparseVectorPolynomial{B,T,X}(copy(p.coeffs)) | ||
|
||
function Base.convert(::Type{MutableSparseVectorPolynomial{B,T,X}}, p::MutableSparseVectorPolynomial{B,S,X}) where {B,T,S,X} | ||
cs = convert(SparseVector{T,Int}, p.coeffs) | ||
MutableSparseVectorPolynomial{B,T,X}(cs) | ||
end | ||
|
||
function Base.:(==)(p1::P, p2::P) where {P <: MutableSparseVectorPolynomial} | ||
iszero(p1) && iszero(p2) && return true | ||
|
||
ks1 = findall(!iszero, p1.coeffs) | ||
ks2 = findall(!iszero, p2.coeffs) | ||
length(ks1) == length(ks2) || return false | ||
idx = sortperm(ks1) | ||
for i ∈ idx | ||
ks1[i] == ks2[i] || return false | ||
p1.coeffs[ks1[i]] == p2.coeffs[ks2[i]] || return false | ||
end | ||
|
||
return true | ||
# # eachindex(p1) == eachindex(p2) || return false | ||
# # coeffs(p1) == coeffs(p2), but non-allocating | ||
# p1val = (p1[i] for i in eachindex(p1)) | ||
# p2val = (p2[i] for i in eachindex(p2)) | ||
# all(((a,b),) -> a == b, zip(p1val, p2val)) | ||
end | ||
|
||
# --- | ||
|
||
Base.firstindex(p::MutableSparseVectorPolynomial) = 0 | ||
function Base.lastindex(p::MutableSparseVectorPolynomial) | ||
isempty(p.coeffs) && return 0 | ||
maximum(keys(p.coeffs)) | ||
end | ||
|
||
function Base.getindex(p::MutableSparseVectorPolynomial{B,T,X}, i::Int) where {B,T,X} | ||
get(p.coeffs, i + 1, zero(T)) | ||
end | ||
|
||
# errors if extending | ||
function Base.setindex!(p::MutableSparseVectorPolynomial{B,T,X}, value, i::Int) where {B,T,X} | ||
p.coeffs[i+1] = value | ||
end | ||
|
||
|
||
function Base.pairs(p::MutableSparseVectorPolynomial) | ||
ks, vs = findnz(p.coeffs) | ||
idx = sortperm(ks) # guarantee order here | ||
Base.Generator(=>, ks[idx] .- 1, vs) | ||
end | ||
Base.keys(p::MutableSparseVectorPolynomial) = Base.Generator(first, pairs(p)) | ||
Base.values(p::MutableSparseVectorPolynomial) = Base.Generator(last, pairs(p)) | ||
|
||
basis(P::Type{<:MutableSparseVectorPolynomial{B, T, X}}, i::Int) where {B,T,X} = P(SparseVector(1+i, [i+1], [1])) | ||
|
||
# return coeffs as a vector | ||
function coeffs(p::MutableSparseVectorPolynomial{B,T}) where {B,T} | ||
d = degree(p) | ||
ps = p.coeffs | ||
[ps[i] for i ∈ 1:(d+1)] | ||
end | ||
|
||
|
||
hasnan(p::MutableSparseVectorPolynomial) = any(hasnan, values(p.coeffs))::Bool | ||
|
||
|
||
offset(p::MutableSparseVectorPolynomial) = 1 | ||
|
||
function keys_union(p::MutableSparseVectorPolynomial, q::MutableSparseVectorPolynomial) | ||
# IterTools.distinct(Base.Iterators.flatten((keys(p), keys(q)))) may allocate less | ||
unique(Base.Iterators.flatten((keys(p), keys(q)))) | ||
end | ||
|
||
|
||
|
||
## --- | ||
|
||
chop_exact_zeros!(d::SparseVector{T, Int}) where {T} = d | ||
|
||
|
||
function _truncate!(v::SparseVector{T,X}; | ||
rtol::Real = Base.rtoldefault(real(T)), | ||
atol::Real = 0) where {T,X} | ||
isempty(v) && return v | ||
δ = something(rtol,0) | ||
ϵ = something(atol,0) | ||
τ = max(ϵ, norm(values(v),2) * δ) | ||
for (i,pᵢ) ∈ pairs(v) | ||
abs(pᵢ) ≤ τ && (v[i] = zero(T)) | ||
end | ||
v | ||
end | ||
|
||
|
||
chop!(p::MutableSparseVectorPolynomial; kwargs...) = (chop!(p.coeffs; kwargs...); p) | ||
function chop!(d::SparseVector{T, Int}; atol=nothing, rtol=nothing) where {T} | ||
isempty(d) && return d | ||
δ = something(rtol,0) | ||
ϵ = something(atol,0) | ||
τ = max(ϵ, norm(values(d),2) * δ) | ||
for (i, pᵢ) ∈ Base.Iterators.reverse(pairs(d)) | ||
abs(pᵢ) ≥ τ && break | ||
d[i] = zero(T) | ||
end | ||
d | ||
end | ||
|
||
## --- | ||
|
||
_zeros(::Type{MutableSparseVectorPolynomial{B,T,X}}, z::S, N) where {B,T,X,S} = zeros(T, N) | ||
|
||
Base.zero(::Type{MutableSparseVectorPolynomial{B,T,X}}) where {B,T,X} = MutableSparseVectorPolynomial{B,T,X}(spzeros(T,0)) | ||
|
||
## --- | ||
|
||
function isconstant(p::MutableSparseVectorPolynomial) | ||
degree(p) <= 0 | ||
end | ||
|
||
Base.:+(p::MutableSparseVectorPolynomial{B,T,X}, q::MutableSparseVectorPolynomial{B,S,X}) where{B,X,T,S} = | ||
_sparse_vector_combine(+, p, q) | ||
Base.:-(p::MutableSparseVectorPolynomial{B,T,X}, q::MutableSparseVectorPolynomial{B,S,X}) where{B,X,T,S} = | ||
_sparse_vector_combine(-, p, q) | ||
|
||
# embed into bigger vector | ||
function _embed(v::SparseVector{T, Int}, l) where {T} | ||
l == length(v) && return v | ||
ks,vs = findnz(v) | ||
SparseVector(l, ks, vs) | ||
end | ||
|
||
|
||
function _sparse_vector_combine(op, p::MutableSparseVectorPolynomial{B,T,X}, q::MutableSparseVectorPolynomial{B,S,X}) where{B,X,T,S} | ||
R = promote_type(T,S) | ||
ps, qs = p.coeffs, q.coeffs | ||
m = max(length(ps), length(qs)) | ||
ps′, qs′ = _embed(ps, m), _embed(qs, m) | ||
cs = op(ps′, qs′) | ||
MutableSparseVectorPolynomial{B,R,X}(cs) | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
8ed70d8
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@JuliaRegistrator register
8ed70d8
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Registration pull request created: JuliaRegistries/General/91087
After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.
This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via: