Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Minor fixes in comments #798

Merged
merged 2 commits into from
Mar 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/Algorithms/LGG09/reach_inhomog.jl
Original file line number Diff line number Diff line change
Expand Up @@ -421,7 +421,7 @@ end # quote / load_krylov_LGG09_inhomog()
# Methods using eigenvalues of the transition matrix
# ------------------------------------------------------------

#= FIXME needs review <<
#= TODO needs review <<

# it is assumed that (λ, d) is an eigenvalue-eigenvector pair of the matrix Φᵀ
function reach_inhomog_dir_eig_LGG09!(out::AbstractVector{N}, X₀, V, d::AbstractVector{N}, λ::N, NSTEPS) where {N}
Expand Down
6 changes: 3 additions & 3 deletions src/Algorithms/QINT/post.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# this algorithms assumes that the initial-value problem is one-dimensional
# FIXME requires special scalar quadratic system type
# TODO requires special scalar quadratic system type
function reach_homog_QINT(alg::QINT{N}, ivp::IVP{<:AbstractContinuousSystem}, tspan;
Δt0::TimeInterval=zeroI, kwargs...) where {N}
n = statedim(ivp)
Expand All @@ -8,7 +8,7 @@ function reach_homog_QINT(alg::QINT{N}, ivp::IVP{<:AbstractContinuousSystem}, ts

@unpack Δ, δ, θ, maxiter, approx_model = alg

# normalize system to canonical form FIXME
# normalize system to canonical form TODO
ivp_norm = _normalize(ivp)
Ω0 = initial_state(ivp_norm)

Expand All @@ -30,7 +30,7 @@ function reach_homog_QINT(alg::QINT{N}, ivp::IVP{<:AbstractContinuousSystem}, ts
#F = Vector{ReachSet{N, IT}}(undef, NSTEPS)

if got_homogeneous
# FIXME consider Δt0
# TODO consider Δt0
F = reach_homog_QINT(; a=a, b=b, c=c, X0=Ω0, T=T, Δ=Δ, δ=δ, θ=θ, maxiter=maxiter)
else
error("not implemented yet")
Expand Down
6 changes: 3 additions & 3 deletions src/Discretization/Exponentiation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ Abstract supertype for all exponentiation algorithms.
"""
abstract type AbstractExpAlg end

# FIXME use _alias_exp to distinguish from setops
# TODO use _alias_exp to distinguish from setops
# no-op
_alias(alg::AbstractExpAlg) = alg

Expand Down Expand Up @@ -428,8 +428,8 @@ end

# compute the matrix Φ₂ = A^{-2} (exp(A*δ) - I - A*δ) assuming that A is invertible
# and explicitly computing inv(A); this function optionally receives Φ = exp(Aδ)
# FIXME don't pass algorithm since it is ignore if Φ is given
#@time Φ2 = ReachabilityAnalysis._Φ₂_inv(abs.(A), δ, ReachabilityAnalysis.BaseExp, Φ);
# TODO don't pass algorithm since it is ignored if Φ is given
# Φ2 = ReachabilityAnalysis._Φ₂_inv(abs.(A), δ, ReachabilityAnalysis.BaseExp, Φ)
function _Φ₂_inv(A::AbstractMatrix, δ, alg, Φ=nothing)
Aδ = A * δ
if isnothing(Φ)
Expand Down
2 changes: 1 addition & 1 deletion src/Flowpipes/clustering.jl
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ function cluster(F, idx, ::LazyClustering{Missing,Val{true}})
return [convexify(view(F, idx))]
end

# FIXME return a UnionSetArray of reach-sets
# TODO return a UnionSetArray of reach-sets
function cluster(F, idx, ::LazyClustering{Missing,Val{false}})
return [view(F, idx)]
end
Expand Down
6 changes: 3 additions & 3 deletions src/ReachSets/TaylorModelReachSet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,7 @@ function _is_intersection_empty(R::TaylorModelReachSet, Y::LazySet, method::Fall
return isdisjoint(set(overapproximate(R, Zonotope)), Y)
end

# FIXME when UnionSet, UnionSetArray <: LazySet
# TODO when UnionSet, UnionSetArray <: LazySet
function _is_intersection_empty(R::TaylorModelReachSet, Y::Union{UnionSet,UnionSetArray},
method::FallbackDisjointness)
return isdisjoint(set(overapproximate(R, Zonotope)), Y)
Expand Down Expand Up @@ -359,7 +359,7 @@ function overapproximate(R::TaylorModelReachSet{N}, ::Type{<:Hyperrectangle};
if nsdiv == 1
partition = [S]
else
# FIXME (also below) may use IA.mince directly
# TODO (also below) may use IA.mince directly
partition = fill(nsdiv, D)
Sdiv = LazySets.split(convert(Hyperrectangle, S), partition)
partition = convert.(IntervalBox, Sdiv)
Expand Down Expand Up @@ -461,7 +461,7 @@ function overapproximate(H::AbstractHyperrectangle{N}, T::Type{<:TaylorModelReac
end

# overapproximate a zonotopic set with a taylor model reachset
# FIXME pass algorithm option to choose between using parallelotope oa or order reduction
# TODO pass algorithm option to choose between using parallelotope oa or order reduction
function overapproximate(Z::AbstractZonotope{N}, ::Type{<:TaylorModelReachSet};
orderQ::Integer=2, orderT::Integer=8, Δt::TimeInterval=zeroI,
indices=1:dim(Z), box_reduction=false) where {N}
Expand Down
2 changes: 1 addition & 1 deletion src/ReachSets/TemplateReachSet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ function set(R::TemplateReachSet)
return T([HalfSpace(di, R.sf[i]) for (i, di) in enumerate(R.dirs)])
end

# FIXME requires adding boundedness property as a type parameter
# TODO requires adding boundedness property as a type parameter
setrep(::Type{<:TemplateReachSet{N,VN}}) where {N,VN} = HPolyhedron{N,VN}
setrep(::TemplateReachSet{N,VN}) where {N,VN} = HPolyhedron{N,VN}

Expand Down
2 changes: 1 addition & 1 deletion test/algorithms/ASB07.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ using ..Overapproximate: _convert_or_overapproximate
sol1_nonrec = solve(P_lin; tspan=(0.0, 1.0), alg=ASB07(; δ=0.04, recursive=false))
@test diameter(set(sol1_rec[end])) < diameter(set(sol1_nonrec[end]))

# FIXME test without IntervalMatrix wrapper
# TODO test without IntervalMatrix wrapper
#A = [-1.0 ± 0.05 -4.0 ± 0.05;
# 4.0 ± 0.05 -1.0 ± 0.05]
#P_lin = @ivp(x' = Ax, x(0) ∈ X0)
Expand Down
4 changes: 2 additions & 2 deletions test/flowpipes/flowpipes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ end

@testset begin
"Flowpipe inclusion"
# Projectile problem
# Projectile problem
A = [0.0 0.5 0.0 0.0; 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.7; 0.0 0.0 0.0 0.0]
X0 = Singleton([0.0, 5.0, 100.0, 0])
U = Singleton([0.0, 0.0, 0.0, -9.81])
Expand Down Expand Up @@ -113,7 +113,7 @@ end
δ = 0.1
F1 = Flowpipe([ReachSet(X, (0 .. δ) + k * δ) for k in 0:10])

#= FIXME requires LazySets#2157
#= TODO requires LazySets#2157
N = eltype(X)
U1 = cluster(F1, 8:10, UnionClustering())
@test U1 isa Vector{ReachSet{N, UnionSetArray{N,Interval{N, IntervalArithmetic.Interval{N}}}}}
Expand Down
16 changes: 8 additions & 8 deletions test/models/hybrid/lotka_volterra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,14 +44,14 @@ end
# TEST RUN:

prob = lotka_volterra_hybrid(nsplit=10, ε_ext=1e-4, n_int = 30, ε = 0.008);
@time sol = solve(prob,
tspan=(0.0, 3.64),
alg=TMJets(abstol=1e-12, orderT=7, orderQ=1, adaptive=true, disjointness=RA.ZonotopeEnclosure()),
max_jumps=2,
intersect_source_invariant=false,
intersection_method=RA.BoxIntersection(),
clustering_method=RA.BoxClustering(),
disjointness_method=RA.BoxEnclosure());
sol = solve(prob,
tspan=(0.0, 3.64),
alg=TMJets(abstol=1e-12, orderT=7, orderQ=1, adaptive=true, disjointness=RA.ZonotopeEnclosure()),
max_jumps=2,
intersect_source_invariant=false,
intersection_method=RA.BoxIntersection(),
clustering_method=RA.BoxClustering(),
disjointness_method=RA.BoxEnclosure());
solz = overapproximate(sol, Zonotope);

B = Ball2([1.0, 1.0], 0.15) # "exact"
Expand Down
Loading