Jiyeon Ham, Soohyun Lim, Kyeng-Hun Lee, Kee-Eung Kim
- Python 2.7
- Keras 2.1.4
- Download dataset from https://github.com/perezjln/dstc6-goal-oriented-end-to-end
- Make
data
directory and unzip the dataset - Make
weight
directory
Then tree veiw should be shown as:
├─data
│ ├─dataset-E2E-goal-oriented
│ └─dataset-E2E-goal-oriented-test-v1.0
│ ├─tst1
│ ├─tst2
│ ├─tst3
│ └─tst4
├─scripts
└─weight
run scripts/main.py
with the following arguments:
-t
: train-et
: entity tracking module-as
: action selector module-eo
: entity output module-ts
: task number to train (only used for action selector module)
Train entity tracking module
$ python scripts/main.py -t -et
Train action selector module for task 1
$ python scripts/main.py -t -as -ts 1
Train entity output module
$ python scripts/main.py -t -eo
run scripts/main.py
with the following arguments:
-us
: test data with unseen slot-oov
: test data with out-of-vocabulary knowledge base-ts
: task number to predict
Predict for task 1 with unseen slot and out-of-vocabulary
$ python main.py -us -oov -ts 1