Version: 1.0.27
Pythonic GitLab API Library
Includes a large portion of useful API calls to GitLab and SQLAlchemy Models to handle loading API calls directly to a database!
This repository is actively maintained - Contributions are welcome!
Additional Features:
- All responses are returned as native Pydantic models
- Save Pydantic models to pickle files locally
- Easily convert Pydantic to SQLAlchemy models for quick database insertion
- Branches
- Commits
- Deploy Tokens
- Groups
- Jobs
- Members
- Merge Request
- Merge Request Rules
- Namespaces
- Packages
- Pipeline
- Projects
- Protected Branches
- Releases
- Runners
- Users
- Wiki
- Custom Endpoint
If your API call isn't supported, you can always run the standard custom API endpoint function to get/post/put/delete and endpoint
Usage:
Using the API directly
#!/usr/bin/python
import gitlab_api
from gitlab_api import pydantic_to_sqlalchemy, upsert, save_model, load_model
from gitlab_api.gitlab_db_models import (
BaseDBModel as Base,
)
import urllib3
import os
from urllib.parse import quote_plus
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
gitlab_token = os.environ["GITLAB_TOKEN"]
postgres_username = os.environ["POSTGRES_USERNAME"]
postgres_password = os.environ["POSTGRES_PASSWORD"]
postgres_db_host = os.environ["POSTGRES_DB_HOST"]
postgres_port = os.environ["POSTGRES_PORT"]
postgres_db_name = os.environ["POSTGRES_DB_NAME"]
if __name__ == "__main__":
print("Creating GitLab Client...")
client = gitlab_api.Api(
url="http://gitlab.arpa/api/v4/",
token=gitlab_token,
verify=False,
)
print("GitLab Client Created\n\n")
print("\nFetching User Data...")
user_response = client.get_users(active=True, humans=True)
print(
f"Users ({len(user_response.data)}) Fetched - "
f"Status: {user_response.status_code}\n"
)
print("\nFetching Namespace Data...")
namespace_response = client.get_namespaces()
print(
f"Namespaces ({len(namespace_response.data)}) Fetched - "
f"Status: {namespace_response.status_code}\n"
)
print("\nFetching Project Data...")
project_response = client.get_nested_projects_by_group(group_id=2, per_page=100)
print(
f"Projects ({len(project_response.data)}) Fetched - "
f"Status: {project_response.status_code}\n"
)
print("\nFetching Merge Request Data...")
merge_request_response = client.get_group_merge_requests(
argument="state=all", group_id=2
)
print(
f"\nMerge Requests ({len(merge_request_response.data)}) Fetched - "
f"Status: {merge_request_response.status_code}\n"
)
# Pipeline Jobs table
pipeline_job_response = None
for project in project_response.data:
job_response = client.get_project_jobs(project_id=project.id)
if (
not pipeline_job_response
and hasattr(job_response, "data")
and len(job_response.data) > 0
):
pipeline_job_response = job_response
elif (
pipeline_job_response
and hasattr(job_response, "data")
and len(job_response.data) > 0
):
pipeline_job_response.data.extend(job_response.data)
print(
f"Pipeline Jobs ({len(getattr(pipeline_job_response, 'data', []))}) "
f"Fetched for Project ({project.id}) - "
f"Status: {pipeline_job_response.status_code}\n"
)
print("Saving Pydantic Models...")
user_file = save_model(model=user_response, file_name="user_model", file_path=".")
namespace_file = save_model(
model=namespace_response, file_name="namespace_model", file_path="."
)
project_file = save_model(
model=project_response, file_name="project_model", file_path="."
)
merge_request_file = save_model(
model=merge_request_response, file_name="merge_request_model", file_path="."
)
pipeline_job_file = save_model(
model=pipeline_job_response, file_name="pipeline_job_model", file_path="."
)
print("Models Saved")
print("Loading Pydantic Models...")
user_response = load_model(file=user_file)
namespace_response = load_model(file=namespace_file)
project_response = load_model(file=project_file)
merge_request_response = load_model(file=merge_request_file)
pipeline_job_response = load_model(file=pipeline_job_file)
print("Models Loaded")
print("Converting Pydantic to SQLAlchemy model...")
user_db_model = pydantic_to_sqlalchemy(schema=user_response)
print(f"Database Models: {user_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
namespace_db_model = pydantic_to_sqlalchemy(schema=namespace_response)
print(f"Database Models: {namespace_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
project_db_model = pydantic_to_sqlalchemy(schema=project_response)
print(f"Database Models: {project_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
merge_request_db_model = pydantic_to_sqlalchemy(schema=merge_request_response)
print(f"Database Models: {merge_request_db_model}\n")
print("Converting Pydantic to SQLAlchemy model...")
pipeline_db_model = pydantic_to_sqlalchemy(schema=pipeline_job_response)
print(f"Database Models: {pipeline_db_model}\n")
print("Creating Engine")
engine = create_engine(
f"postgresql://{postgres_username}:{quote_plus(postgres_password)}@"
f"{postgres_db_host}:{postgres_port}/{postgres_db_name}"
)
print("Engine Created\n\n")
print("Creating Tables...")
Base.metadata.create_all(engine)
print("Tables Created\n\n")
print("Creating Session...")
Session = sessionmaker(bind=engine)
session = Session()
print("Session Created\n\n")
print(f"Inserting ({len(user_response.data)}) Users Into Database...")
upsert(session=session, model=user_db_model)
print("Users Synchronization Complete!\n")
print(f"Inserting ({len(namespace_response.data)}) Namespaces Into Database...")
upsert(session=session, model=namespace_db_model)
print("Namespaces Synchronization Complete!\n")
print(f"Inserting ({len(project_response.data)}) Projects Into Database...\n")
upsert(session=session, model=project_db_model)
print("Projects Synchronization Complete!\n")
print(
f"Inserting ({len(merge_request_response.data)}) Merge Requests Into Database..."
)
upsert(session=session, model=merge_request_db_model)
print("Merge Request Synchronization Complete!\n")
print(
f"Inserting ({len(pipeline_job_response.data)}) Pipeline Jobs Into Database..."
)
upsert(session=session, model=pipeline_db_model)
print("Pipeline Jobs Synchronization Complete!\n")
session.close()
print("Session Closed")
Installation Instructions:
Install Python Package
python -m pip install gitlab-api
Tests:
pre-commit check
pre-commit run --all-files
pytest
python -m pip install -r test-requirements.txt
pytest ./test/test_gitlab_models.py