-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTestModel.py
87 lines (71 loc) · 2.23 KB
/
TestModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import cv2
import numpy as np
from keras.models import model_from_json
emotion_dict = {
0: "Red",
1: "Yellow",
2: "Red",
3: "Green",
4: "Blue",
5: "Blue",
6: "Yellow",
}
# load json and create model
json_file = open("model/emotion_model.json", "r")
loaded_model_json = json_file.read()
json_file.close()
emotion_model = model_from_json(loaded_model_json)
print("==================================================")
print(loaded_model_json)
print("==================================================")
# load weights into new model
emotion_model.load_weights("model/emotion_model.h5")
print("Loaded model from disk")
# start the webcam feed
# cap = cv2.VideoCapture(0)
# pass here your video path
cap = cv2.VideoCapture(0)
while True:
# Find haar cascade to draw bounding box around face
ret, frame = cap.read()
frame = cv2.resize(frame, (1080, 760))
if not ret:
break
face_detector = cv2.CascadeClassifier(
"haarcascades/haarcascade_frontalface_default.xml"
)
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces available on camera
num_faces = face_detector.detectMultiScale(
gray_frame, scaleFactor=1.3, minNeighbors=5
)
# take each face available on the camera and Preprocess it
for x, y, w, h in num_faces:
cv2.rectangle(frame, (x, y - 50), (x + w, y + h + 10), (0, 255, 0), 4)
roi_gray_frame = gray_frame[y : y + h, x : x + w]
cropped_img = np.expand_dims(
np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0
)
# predict the emotions
emotion_prediction = emotion_model.predict(cropped_img)
print(emotion_prediction)
maxindex = int(np.argmax(emotion_prediction))
print(maxindex)
try:
cv2.putText(
frame,
emotion_dict[maxindex],
(x + 5, y - 20),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 0, 0),
2,
cv2.LINE_AA,
)
except:
print("invalid index")
cv2.imshow("Emotion Detection", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()