Skip to content

Projects using Simulation Based Inference for CL pipeline pieces

License

Notifications You must be signed in to change notification settings

LSSTDESC/CL-SBI

Repository files navigation

weaklensingclustersbi

This repository contains tools for experiments for Weak Lensing Galaxy Clusters using Simulation Based Inference.


Summary:

We've split our workflow into four parts:

  1. Simulation (/configs/simulations) - sim_config tells us about how our simulations were generated/obtained (e.g. the mass-concentration relation used, how much scatter the m-c relation has, the log10mass range, etc).
  2. Observation(/configs/observations) - obs_config tells us about how our observations were generated/obtained (e.g. the richness-mass relation used, the m-c relation used, the scatter for each of those relations, the richness range, the number of observations, etc).
  3. Inference (/configs/inference) - infer_config tells us about how our inference was done (e.g. our priors, etc.)
  4. Plotting - we produce plots using both ChainConsumer and PyGTC.

For each step, the script reading the config will save the output files to the corresponding outputs directory as the config.

Pipeline Flowchart


Running instructions: 1a) Create a simulation config in the configs/simulations directory 1b) Generate simulations using the following script:

python examples/gen_simulations.py --sim_id {SIM_ID} --num_sims {NUM_SIMS}. This will output to the outputs/simulations/{SIM_ID}.{NUM_SIMS} directory

2a) Create an inference config in the configs/inference directory 2b) Generate a posterior using the following script:

python examples/gen_posterior.py --sim_id {SIM_ID} --infer_id {INFER_ID} --num_sims {NUM_SIMS}. This will output to the outputs/posteriors/{SIM_ID}.{INFER_ID}.{NUM_SIMS} directory

3a) Create an observation config in the configs/observations directory 3b) Generate observations using the following script:

python examples/gen_observations.py --obs_id {OBS_ID} --num_obs {NUM_OBS}. This will output to the outputs/observations/{OBS_ID}.{NUM_OBS} directory
  1. Run inference using the following script:
    python examples/run_inference.py --sim_id {SIM_ID} --infer_id {INFER_ID} --obs_id {OBS_ID} --num_sims {NUM_SIMS} --num_obs {NUM_OBS}. This will output to the outputs/inference/{SIM_ID}.{INFER_ID}.{OBS_ID}.{NUM_SIMS}.{NUM_OBS} directory
  2. Plot the contours from the SBI/MCMC chains using the following script:
    python examples/plot_chains.py --sim_id {SIM_ID} --infer_id {INFER_ID} --obs_id {OBS_ID} --num_sims {NUM_SIMS} --num_obs {NUM_OBS}. This will output to the outputs/plots/{SIM_ID}.{INFER_ID}.{OBS_ID}.{NUM_SIMS}.{NUM_OBS} directory

About

Projects using Simulation Based Inference for CL pipeline pieces

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published