Skip to content

Implementation of paper: Equivariant Learning for Out-of-Distribution Cold-start Recommendation. (backbone model CLCRec) (MM'23)

Notifications You must be signed in to change notification settings

Linxyhaha/EQUAL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 

Repository files navigation

Equivariant Learning for Out-of-Distribution Cold-start Recommendation

This is the pytorch implementation of our paper

Equivariant Learning for Out-of-Distribution Cold-start Recommendation

Environment

  • Anaconda 3
  • python 3.7.11
  • pytorch 1.10.0
  • numpy 1.21.4

Usage

Data

The experimental data are in './data' folder.

Training

python main.py --model_name=$1 --data_path=$2 --batch_size=$3 --l_r=$4 --reg_weight=$5 --num_neg=$6 --lr_lambda=$7 --num_sample=$8 --temp_value=$9 --dim_E=$10 --alpha=$11 --pos_ratio=$12 --neg_ratio=$13 --align_all=$14 --mse_weight=$15 --log_name=$16 --gpu=$17

or use run.sh

sh run.sh CLCRec micro-video 256 0.001 0.001 512 0.1 0.7 1 128 0.9 0.1 0.1 0 0.01 log 0
  • The log file will be in the './code/log/' folder.
  • The explanation of hyper-parameters can be found in './code/main.py'.
  • The default hyper-parameter settings are detailed in './code/hyper-parameters.txt'.

Inference

Get the results of EQUAL with Implicit Alignment Module (IAM) by running inference.py:

python inference.py --backmodel=$1 --drop_obj=$2 --dropout=$3 --topN=$4 --log_name=$5 --gpu=$6

or use inference.sh

sh inference.sh CLCRec model [0,0.05,0.1,0.15,0.2] 100 log 0

The explanation of hyper-parameters can be found in './code/inference.py'. The default hyper-parameter settings are detailed in './code/hyper-parameters.txt'.

Examples

  1. Train EQUAL on micro-video:
cd ./code
sh run.sh CLCRec micro-video 256 0.001 0.001 512 0.1 0.7 1 128 0.9 0.1 0.1 0 0.01 log 0
  1. Inference on Amazon:
cd ./code
python inference.py --backmodel CLCRec --drop_obj model --dropout [0,0.05,0.1,0.15,0.2] --topN 50 --log_name log --gpu 0

About

Implementation of paper: Equivariant Learning for Out-of-Distribution Cold-start Recommendation. (backbone model CLCRec) (MM'23)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published