Skip to content

LouisChen1992/DeepIPCA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepIPCA

This repository implements IPCA models.

Table of Contents


Empirical Results

Here we report the results for the number of factor with the best validation Sharpe Ratio.

  • Number of Factors
Model Optimal Number of Factors
Naive IPCA 12
Iterative IPCA 17
Iterative Deep IPCA (Linear) 14
Iterative Deep IPCA (hpSearch) 9
GD Deep IPCA (hpSearch) 18
  • Sharpe Ratio
Model Train Valid Test
Naive IPCA 1.04 1.17 0.47
Iterative IPCA 2.12 1.52 0.95
Iterative Deep IPCA (Linear) 2.04 1.58 0.94
Iterative Deep IPCA (hpSearch) 1.88 1.78 0.93
GD Deep IPCA (hpSearch) 2.32 1.92 0.88

  • Unexplained Variation
Model Train Valid Test
Naive IPCA 0.99 0.99 0.99
Iterative IPCA 0.65 0.82 0.82
Iterative Deep IPCA (Linear) 0.65 0.82 0.82
Iterative Deep IPCA (hpSearch) 0.66 0.82 0.83
GD Deep IPCA (hpSearch)
  • Fama-McBeth Type Alpha (1e-03)
Model Train Valid Test
Naive IPCA 1.45 3.50 4.00
Iterative IPCA 1.32 3.07 3.62
Iterative Deep IPCA (Linear) 1.30 3.11 3.71
Iterative Deep IPCA (hpSearch) 1.37 3.21 3.74
GD Deep IPCA (hpSearch)
  • Weighted Fama-McBeth Type Alpha (1e-04)
Model Train Valid Test
Naive IPCA 1.00 5.51 1.70
Iterative IPCA 0.68 4.73 1.23
Iterative Deep IPCA (Linear) 0.68 4.79 1.25
Iterative Deep IPCA (hpSearch) 0.69 4.95 1.27
GD Deep IPCA (hpSearch)

Author

About

IPCA with Deep Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages