Node.js wrap for SeetaFaceEngine.
see other language version:
See examples for more implementations.
Ubuntu | Windows | |
---|---|---|
version | 16.04/18.04 | 7/8/8.1/10 |
arch | x64 | x86/x86_64 |
minimum | 1 GB | 1 GB |
recommend | 2+GB | 2+GB |
build status |
- Git tree: https://github.com/Mitscherlich/node-seeta.git
- Clone with
git clone https://github.com/Mitscherlich/node-seeta.git
π¨ Build instructions.
- Clone with
Detect face(s) in a image.
const FaceDetection = require('seeta').FaceDetection
const path = require('path')
// 1. name face detection model path.
const fdModel = path.join('path', 'to', 'models/SeetaFaceDetector2.0.ats')
// 2. create a detector
const detector = new FaceDetection(fdModel)
// 3. detect face(s) in a image
const results = detector.detect(path.join('path', 'to', 'image/test.png'))
console.log({ result })
// result will in this form:
// {
// "count": Number, // count of face(s)
// "data": {
// "faces": [{
// "x": Number, // face left-upper point x
// "y": Number, // face left-upper point y
// "width": Number, // face bounding box width
// "height": Number // face bounding box height
// }]
// }
// }
Mark facial points for compare and recognize.
const { FaceDetection, PointDetector } = require('seeta')
const path = require('path')
// 1. name detector models path.
const fdModel = path.join('path', 'to', 'models/SeetaFaceDetector2.0.ats')
const faModel = path.join('path', 'to', 'models/SeetaPointDetector2.0.pts5.ats')
// 2. create a point detector
const detector = new FaceDetection(fdModel)
const pointer = new PointDetector(faModel)
// 3. detect face(s) in a image
const faces = detector.detect(path.join('path', 'to', 'image/test.png'))
if (faces.data && face.data.faces.length) {
const points = pointer.detect(path.join('path', 'to', 'image/test.png', faces.data.faces[0]))
console.log({ result })
}
// result will in this form:
// {
// "data": {
// "points": [{
// "x": Number, // facial point x
// "y": Number, // facial point y
// }]
// }
// }
1 vs 1
compare
compare two image contains face and compare for its similar.
const { FaceDetector, PointDetector, FaceRecognizer } = require('seeta')
const path = require('path')
// 1. name detector models path.
const fdModel = path.join('path', 'to', 'models/SeetaFaceDetector2.0.ats')
const faModel = path.join('path', 'to', 'models/SeetaPointDetector2.0.pts5.ats')
const frModel = path.join('path', 'to', 'models/SeetaFaceRecognizer2.0.ats')
// 2. create detectors
console.time('initailize')
const detector = new FaceDetector(fdModel)
const pointer = new PointDetector(faModel)
const recognizer = new FaceRecognizer(frModel)
console.timeEnd('initailize')
// 3. detect face(s) in a image
const imagePath = join('path', 'to', 'data/test.png')
const faces = detector.detect(imagePath)
const face1 = faces.data.faces[0]
const face2 = faces.data.faces[1]
const points1 = pointer.detect(imagePath, face1).data.points
const points2 = pointer.detect(imagePath, face2).data.points
// 4. compare face(s) in two images
const similar = recognizer.compare(
{ path: imagePath, points: points1 }, { path: imagePath, points: points1 }
)
console.log({ similar })
1 vs n
compare
- first: register a image
const { FaceDetector, PointDetector, FaceRecognizer } = require('seeta')
const path = require('path')
// 1. name detector models path.
const fdModel = path.join('path', 'to', 'models/SeetaFaceDetector2.0.ats')
const faModel = path.join('path', 'to', 'models/SeetaPointDetector2.0.pts5.ats')
const frModel = path.join('path', 'to', 'models/SeetaFaceRecognizer2.0.ats')
// 2. create detectors
console.time('initailize')
const detector = new FaceDetector(fdModel)
const pointer = new PointDetector(faModel)
const recognizer = new FaceRecognizer(frModel)
console.timeEnd('initailize')
// 3. detect face(s) in a image
const imagePath = path.join('path', 'to', 'data/test.png')
const faces = detector.detect(imagePath)
const face = faces.data.faces[0]
const points = pointer.detect(imagePath, face1).data.points
// 4. register a face
const index = recognizer.register(imagePath, points)
console.log({ index }) // ==> the index in recognizer face database
- find all similar in database
// 5. detect face(s) in a image
const newImage = path.join('path', 'to', 'data/another_image.png')
const faces1 = detector.detect(newImage)
const face1 = faces1.data.faces[0]
const points1 = pointer.detect(newImage, face1).data.points
// 6. find all similar in database
const results = recognizer.recognition(newImage, face1)
if (result.data && result.data.length) {
console.log({ similars: result.data }) // ==> all similars in face databse
}