Skip to content

Commit

Permalink
0, 1 or several mother points per species
Browse files Browse the repository at this point in the history
Each species can have 0, 1 or several mother points. Coordinates can be provided by the user or randomly created by the program.

Instead of a common sigma value for all species, a vector of values can be given.

Some commenting
  • Loading branch information
AlbanSagouis authored Oct 11, 2019
1 parent 5458a91 commit 4ffe1d5
Showing 1 changed file with 83 additions and 47 deletions.
130 changes: 83 additions & 47 deletions R/Sim_Community.R
Original file line number Diff line number Diff line change
Expand Up @@ -202,7 +202,7 @@ sim_sad <- function(s_pool, n_sim,
# abund_pool <- abund_pool[abund_pool > 0]
rel_abund_pool <- abund_pool/sum(abund_pool)
rel_abund_pool <- sort(rel_abund_pool, decreasing = T)
names(rel_abund_pool) <- paste0("species",seq_along(rel_abund_pool))
names(rel_abund_pool) <- paste("species",seq_along(rel_abund_pool), sep="_") # underslash addition for readability

sample_vec <- sample(x = names(rel_abund_pool),
size = n_sim, replace = TRUE,
Expand Down Expand Up @@ -640,9 +640,11 @@ sim_poisson_community <- function(s_pool,
#'
sim_thomas_coords <- function(abund_vec,
sigma = 0.02,
mother_points = NA,
cluster_points = NA,
xrange = c(0,1),
mother_points = 0, # should be renamed for consistency with rThomas_r and rThomas_rcpp.
xmother=NA, # list of vectors
ymother=NA, # list of vectors
cluster_points = NA, # I would rename it and change the shiny app description for a better understanding: mean_point_number_per_cluster, mu_points_cluster etc
xrange = c(0,1), # could easily be turned into a list with one range per species. Several ranges per species would be challenging.
yrange = c(0,1)
)
{
Expand Down Expand Up @@ -680,75 +682,109 @@ sim_thomas_coords <- function(abund_vec,
sigma_vec <- rep(sigma[1], times = s_local)
}

x = numeric(n)
y = numeric(n)
id_spec <- factor(rep(names(abund_vec), times = abund_vec))

# determine points per cluster and number of mother points
if (all(!is.na(mother_points))){

if (length(mother_points) == s_local)
n_mothers <- mother_points
else
n_mothers <- rep(mother_points[1], s_local)

points_per_cluster <- abund_vec / n_mothers

} else {

if (all(!is.na(cluster_points))){

if (length(cluster_points) == s_local)
points_per_cluster <- cluster_points
else
points_per_cluster <- rep(cluster_points[1], s_local)

lambda_mother <- abund_vec / points_per_cluster

} else {
lambda_mother <- points_per_cluster <- sqrt(abund_vec)
}
#n.mother_points <- rpois(s_local, lambda = lambda_mother)
n_mothers <- ceiling(lambda_mother)
}
if((any(!is.na(xmother)) | any(!is.na(ymother))) & any(!is.na(mother_points))) stop("random_mother_points or click_for_mother_points method?")

method <- NA
if(any(!is.na(xmother)) | any(!is.na(ymother))) {
method <- "click_for_mother_points"
stopifnot(length(xmother) == length(ymother))
stopifnot(all(!is.na(unlist(xmother)) & !is.na(unlist(ymother)))) # error message is not meaningful

# if(length(xmother) == 1 & length(ymother) == 1){
# x_mother <- rep(xmother, n)
# y_mother <- rep(ymother, n)
# } else {
# stopifnot(length(xmother) == s_local & length(ymother) == s_local) # planned implementation: at least one per species
# x_mother <- rep(xmother, times=abund_vec)
# y_mother <- rep(ymother, times=abund_vec)
# }
#xmother <- rep(xmother, s_local)
#ymother <- rep(ymother, s_local)
mother_points <- sapply(xmother, function(x) ifelse(any(x=="no clustering"), 0, length(x)))
n_mothers <- mother_points

}

# determine the number of points per cluster and the number of mother points
# if mother_points and cluster_points are given OR xmother and ymother, and cluster points are given, cluster_points is overridden. If mother_points=0 and cluster_points=400 (high clustering), cluster_points is overridden and there is 0 clustering -> there should be a warning to let the user know.
if(is.na(method)){
if (all(!is.na(mother_points))){
method <- "random_mother_points"
if (length(mother_points) == s_local)
n_mothers <- mother_points
else
n_mothers <- rep(mother_points[1], s_local)

points_per_cluster <- abund_vec / n_mothers

} else {

if (all(!is.na(cluster_points))){
method <- "cluster_points"
if (length(cluster_points) == s_local)
points_per_cluster <- cluster_points
else
points_per_cluster <- rep(cluster_points[1], s_local)

lambda_mother <- abund_vec / points_per_cluster

} else {
lambda_mother <- points_per_cluster <- sqrt(abund_vec)
}
#n.mother_points <- rpois(s_local, lambda = lambda_mother)
n_mothers <- ceiling(lambda_mother)
}
}


x <- numeric(n)
y <- numeric(n)
id_spec <- factor(rep(names(abund_vec), times = abund_vec))

# create map for first species
if (sigma_vec[1] < 2 * max_dim){
dat1 <- rThomas_rcpp(abund_vec[1],
dat1 <- rThomas_r(n_points=abund_vec[1],
n_mother_points = n_mothers[1],
sigma = sigma_vec[1],
mu = points_per_cluster[1],
xmin = xrange[1], xmax = xrange[2],
ymin = yrange[1], ymax = yrange[2])
ymin = yrange[1], ymax = yrange[2],
xmother=xmother[[1]], ymother=ymother[[1]])
} else {
x1 <- stats::runif(abund_vec[1], xrange[1], xrange[2])
y1 <- stats::runif(abund_vec[1], yrange[1], yrange[2])
dat1 <- data.frame(x = x1, y = y1)
}

irange <- 1:cum_abund[1]
x[irange] <- dat1$x
y[irange] <- dat1$y
x[irange] <- dat1[,"x"]
y[irange] <- dat1[,"y"]

if (s_local > 1){
for (ispec in 2:s_local){

if (sigma_vec[ispec] < 2 * max_dim){
dat1 <- rThomas_rcpp(abund_vec[ispec],
if(method=="click_for_mother_points") xmother_spec <- xmother[[ispec]] else xmother_spec <- NA
if(method=="click_for_mother_points") ymother_spec <- ymother[[ispec]] else ymother_spec <- NA
dat1 <- rThomas_r(n_points=abund_vec[ispec],
n_mother_points = n_mothers[ispec],
sigma = sigma_vec[ispec],
mu = points_per_cluster[ispec],
xmin = xrange[1], xmax = xrange[2],
ymin = yrange[1], ymax = yrange[2])
ymin = yrange[1], ymax = yrange[2],
xmother=xmother_spec,
ymother=ymother_spec
)
} else {
x1 <- stats::runif(abund_vec[ispec], xrange[1], xrange[2])
y1 <- stats::runif(abund_vec[ispec], yrange[1], yrange[2])
dat1 <- data.frame(x = x1, y = y1)
}

irange <- (cum_abund[ispec-1] + 1):cum_abund[ispec]
x[irange] <- dat1$x
y[irange] <- dat1$y
x[irange] <- dat1[,"x"]
y[irange] <- dat1[,"y"]
}
}

Expand Down Expand Up @@ -799,7 +835,9 @@ sim_thomas_community <- function(s_pool, n_sim,
sigma = 0.02,
cluster_points = NA,
mother_points = NA,
xrange = c(0,1),
xmother=NA,
ymother=NA,
xrange = c(0,1),
yrange = c(0,1)
)
{
Expand All @@ -813,6 +851,8 @@ sim_thomas_community <- function(s_pool, n_sim,
sigma = sigma,
mother_points = mother_points,
cluster_points = cluster_points,
xmother=xmother,
ymother=ymother,
xrange = xrange,
yrange = yrange)

Expand Down Expand Up @@ -923,7 +963,3 @@ sim_thomas_community <- function(s_pool, n_sim,
# names(dat3) <- c("X","Y","spec_id")
# return(dat3)
# }




0 comments on commit 4ffe1d5

Please sign in to comment.