LANDSLIDE β°π PREDICTOR
A comprehensive AI-Powered embedded system designed to predict the possibility of landslides in an area based on real-time environmental sensor data and machine learning analysis.
- Real-time Monitoring: Collects environmental data using Arduino-based sensors.
- Data Processing: Processes sensor data for soil moisture, temperature, humidity and light intensity.
- Local Storage: Stores sensor readings in local database for offline analysis.
- Remote Storage: Syncs data with remote database for backup and distributed access.
- Machine Learning: Uses scikit-learn models to predict landslide probability.
- Visualization: Interactive plots and graphs using matplotlib and seaborn.
- Hardware Design: Complete electronic system design in Proteus.
- Web Interface: Online dashboard for monitoring and predictions.
NATURAL-DISASTER-PREDICTION-SYSTEM/
βββ APPLICATION/ π
β βββ NATURAL DISASTER PREDICTION SYSTEM.ipynb π€ ML model training notebook
βββ DATABASE/ πΎ
β βββ msodbcsql_2.msi π SQL driver
β βββ msodbcsql.msi π SQL driver
β βββ Plant & Environmental Data.sql π SQL database
β βββ Plant & Environmental Data.sql.bak πΎ Backup file
βββ DOCUMENTATION/ π
βββ HARDWARE/ π§
β βββ environmentalData_MainClass_PrimaryArduino/
β β βββ environmentalData_MainClass_PrimaryArduino.ino π― Primary Arduino code
β βββ environmentalData_MainClass_SupportArduino/
β β βββ environmentalData_MainClass_SupportArduino.ino π Support Arduino code
β βββ environmentalData_MonitorClass_SupportArduino/
β βββ environmentalData_MonitorClass_SupportArduino.ino π‘ Monitoring code
βββ INTERFACE/ π₯οΈ
βββ PROTEUS/ β‘
β βββ Electronic Design Files
β βββ Circuit Simulations
βββ SCHEMATICS/ π
βββ SOFTWARE DESIGN/
βββ arduino class diagram.uxf π Class diagram
βββ arduino E-R diagram.uxf π E-R diagram
βββ arduino sequence diagram.uxf π Sequence diagram
βββ arduino use case diagram.uxf π Use case diagram
- Arduino microcontroller
- Soil moisture sensors
- Temperature and humidity sensors
- Light intensity sensors
- LCD display
- Buzzers for alerts
- Relay for fan control
- Stepper motor controller
- Arduino IDE
- Python 3.8+
- Proteus 8.7+
- Required sensors and components
- Web browser
- Follow the Proteus circuit design to assemble the hardware components
- Upload the Arduino code to the microcontroller:
arduino-cli compile --upload Arduino_Code.ino
- Clone this repository:
git clone https://github.com/N-Elmer/NATURAL-DISASTER-PREDICTION-SYSTEM.git
cd NATURAL-DISASTER-PREDICTION-SYSTEM
- Install Python dependencies:
pip install -r requirements.txt
- Access the web interface at:
https://s7ac6zkycfusqzuh.anvil.app/D3COVOGNRLN7VLXFJ3FJ7DD2
- Real-time sensor readings for:
- Soil moisture levels
- Temperature
- Air humidity
- Light intensity
- Signal conditioning
- Noise filtering
- Data normalization
- Feature extraction
- Machine learning models for landslide prediction
- Real-time probability assessment
- Historical data analysis
- Alert generation
- Interactive dashboards
- Time-series plots
- Sensor data graphs
- Prediction confidence metrics
-
Hardware:
- Arduino libraries
- Sensor drivers
- LCD library
-
Software:
- pandas: Data manipulation
- scikit-learn: Machine learning
- matplotlib: Data visualization
- seaborn: Statistical plotting
Contributions are welcome! Please feel free to submit issues and pull requests.
This project is licensed under the Apache License - see the LICENSE file for details.
Powered by AI π€ and β‘ Iot
Web Interface: Live Demo