Skip to content

N-Elmer/NATURAL-DISASTER-PREDICTION-SYSTEM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

14 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

NATURAL-DISASTER-PREDICTION-SYSTEM

LANDSLIDE β›°πŸ“ˆ PREDICTOR

A comprehensive AI-Powered embedded system designed to predict the possibility of landslides in an area based on real-time environmental sensor data and machine learning analysis.

Features

  • Real-time Monitoring: Collects environmental data using Arduino-based sensors.
  • Data Processing: Processes sensor data for soil moisture, temperature, humidity and light intensity.
  • Local Storage: Stores sensor readings in local database for offline analysis.
  • Remote Storage: Syncs data with remote database for backup and distributed access.
  • Machine Learning: Uses scikit-learn models to predict landslide probability.
  • Visualization: Interactive plots and graphs using matplotlib and seaborn.
  • Hardware Design: Complete electronic system design in Proteus.
  • Web Interface: Online dashboard for monitoring and predictions.

Project Structure

NATURAL-DISASTER-PREDICTION-SYSTEM/

β”œβ”€β”€ APPLICATION/  πŸ“Š

β”‚   └── NATURAL DISASTER PREDICTION SYSTEM.ipynb  πŸ€– ML model training notebook

β”œβ”€β”€ DATABASE/     πŸ’Ύ

β”‚   β”œβ”€β”€ msodbcsql_2.msi                           πŸ”Œ SQL driver

β”‚   β”œβ”€β”€ msodbcsql.msi                             πŸ”Œ SQL driver

β”‚   β”œβ”€β”€ Plant & Environmental Data.sql            πŸ“ SQL database

β”‚   └── Plant & Environmental Data.sql.bak        πŸ’Ύ Backup file

β”œβ”€β”€ DOCUMENTATION/ πŸ“š

β”œβ”€β”€ HARDWARE/      πŸ”§

β”‚   β”œβ”€β”€ environmentalData_MainClass_PrimaryArduino/    

β”‚   β”‚   └── environmentalData_MainClass_PrimaryArduino.ino     🎯 Primary Arduino code

β”‚   β”œβ”€β”€ environmentalData_MainClass_SupportArduino/

β”‚   β”‚   └── environmentalData_MainClass_SupportArduino.ino     πŸ”„ Support Arduino code

β”‚   └── environmentalData_MonitorClass_SupportArduino/

β”‚       └── environmentalData_MonitorClass_SupportArduino.ino  πŸ“‘ Monitoring code

β”œβ”€β”€ INTERFACE/     πŸ–₯️

β”œβ”€β”€ PROTEUS/       ⚑

β”‚   β”œβ”€β”€ Electronic Design Files

β”‚   └── Circuit Simulations

└── SCHEMATICS/    πŸ“

    └── SOFTWARE DESIGN/

        β”œβ”€β”€ arduino class diagram.uxf           πŸ“Š Class diagram

        β”œβ”€β”€ arduino E-R diagram.uxf             πŸ“Š E-R diagram

        β”œβ”€β”€ arduino sequence diagram.uxf        πŸ“Š Sequence diagram

        └── arduino use case diagram.uxf        πŸ“Š Use case diagram

Hardware Components

  • Arduino microcontroller
  • Soil moisture sensors
  • Temperature and humidity sensors
  • Light intensity sensors
  • LCD display
  • Buzzers for alerts
  • Relay for fan control
  • Stepper motor controller

Getting Started

Prerequisites

  • Arduino IDE
  • Python 3.8+
  • Proteus 8.7+
  • Required sensors and components
  • Web browser

Hardware Setup

  1. Follow the Proteus circuit design to assemble the hardware components
  2. Upload the Arduino code to the microcontroller:
arduino-cli compile --upload Arduino_Code.ino

Software Installation

  1. Clone this repository:
git clone https://github.com/N-Elmer/NATURAL-DISASTER-PREDICTION-SYSTEM.git
cd NATURAL-DISASTER-PREDICTION-SYSTEM
  1. Install Python dependencies:
pip install -r requirements.txt
  1. Access the web interface at:
https://s7ac6zkycfusqzuh.anvil.app/D3COVOGNRLN7VLXFJ3FJ7DD2

Key Features

Data Collection

  • Real-time sensor readings for:
    • Soil moisture levels
    • Temperature
    • Air humidity
    • Light intensity

Data Processing

  • Signal conditioning
  • Noise filtering
  • Data normalization
  • Feature extraction

Prediction System

  • Machine learning models for landslide prediction
  • Real-time probability assessment
  • Historical data analysis
  • Alert generation

Visualization

  • Interactive dashboards
  • Time-series plots
  • Sensor data graphs
  • Prediction confidence metrics

Dependencies

  • Hardware:

    • Arduino libraries
    • Sensor drivers
    • LCD library
  • Software:

    • pandas: Data manipulation
    • scikit-learn: Machine learning
    • matplotlib: Data visualization
    • seaborn: Statistical plotting

Contributing

Contributions are welcome! Please feel free to submit issues and pull requests.

License

This project is licensed under the Apache License - see the LICENSE file for details.


Powered by AI πŸ€– and ⚑ Iot

Web Interface: Live Demo