Skip to content
View NExT-GPT's full-sized avatar

Block or report NExT-GPT

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
NExT-GPT/README.md

NExT-GPT: Any-to-Any Multimodal LLM

Shengqiong Wu, Hao Fei*, Leigang Qu, Wei Ji, and Tat-Seng Chua. (*Correspondence )

ICML 2024, Oral Paper

NExT++ Research Center, School of Computing, National University of Singapore


License YouTube

This repository hosts the code, data and model weight of NExT-GPT, the first end-to-end MM-LLM that perceives input and generates output in arbitrary combinations (any-to-any) of text, image, video, and audio and beyond.

Noted: we wrap the former old codebase into the NExT-GPT-Lagacy. Please refer to this new codebase for all training and tuning procedures.


🎉 News

  • [2023.09.15] 🚀🚀 Release the code of NExT-GPT in version 7b_tiva_v0.
  • [2023.09.27] 🔨🧩 Added modality-blended batch sampler.
  • [2023.10.01] 📢📢 Release the T2M instruction dataset.
  • [2023.10.04] 👏👏 Release the checkpoint of NExT-GPT in version 7b_tiva_v0 .
  • [2023.10.15] 🔨🚀 Update of NExT-GPT in version 7b_tiva_v0 .
  • [2024.10.07] 👏👏 Release the data and the corresponding construction methods, please refer DATA_README.md for more details.

👉 TODO

  • Updating NExT-GPT in more types&sizes of LLMs.
  • Empowering NExT-GPT with more modalities of inputs&outputs.
  • ...

Example Demos

Here we showcase examples generated from NExT-GPT. For more examples, kindly visit the webpage, or the online live demo.

example_5_Trim.mp4
example_6_Trim.mp4
example_9_Trim.mp4

Brief Introduction

NExt-GPT is built on top of existing pre-trained LLM, multimodal encoder and SoTA diffusion models, with sufficient end-to-end instruction tuning.

Video-LLaMA

  • Multimodal Encoding Stage. Leveraging established encoders to encode inputs in various modalities, where these representations are projected into language-like representations comprehensible to the LLM through a projection layer.
  • LLM Understanding and Reasoning Stage. Harnessing an existing open-sourced LLM as the core to process input information for semantic understanding and reasoning. The LLM not only directly generates text tokens but also produces unique “modality signal” tokens that serve as instructions to dictate the decoding layers whether & what modal content to output correspondingly.
  • Multimodal Generation Stage. Receiving the multimodal signals with specific instructions from LLM (if any), the Transformer-based output projection layers map the signal token representations into the ones that are understandable to following multimodal decoders.

For more technical details, kindly refer to the paper.


Getting Started

Table of Contents:


1. Code Structure

.
|-- NExT-GPT-Lagacy       # the previous version of the model
|-- assets
|-- checkpoints           # save the pretraining and tuning checkpoints
|-- data  
|   |-- IT_data
|   |   |-- MosIT_data
|   |   |-- T+X-T_data    # text+[image/audio/video] to text instruction data
|   |   `-- T-T+X_data    # synthesized text to text+[image/audio/video] instruction data
|   |-- T_X_pair_data     # text-autio pairs data
|   |   |-- audiocap
|   |   |-- cc3m
|   |   `-- webvid
|   |-- embed 
|   `-- prepare_data.py
|-- figures
|-- merge_lora_weights.py
|-- nextgpt
|   |-- __init__.py
|   |-- constants.py
|   |-- conversation.py
|   |-- dataset
|   |   |-- __init__.py
|   |   |-- audio_processor.py
|   |   |-- base_dataset.py
|   |   |-- catalog.py
|   |   |-- concat_dataset.py
|   |   |-- dataset_utils.py
|   |   `-- sampler.py
|   |-- mm_utils.py
|   |-- model
|   |   |-- __init__.py
|   |   |-- apply_delta.py
|   |   |-- builder.py
|   |   |-- consolidate.py
|   |   |-- language_model
|   |   |-- make_delta.py
|   |   |-- multimodal_decoder
|   |   |-- multimodal_encoder
|   |   |-- multimodal_projector
|   |   |-- nextgpt_arch.py
|   |   `-- utils.py
|   `-- utils.py
|-- scripts
|   |-- finetune.sh
|   |-- pretrain_dec.sh
|   |-- pretrain_enc.sh
|   |-- zero2.json
|   |-- zero3.json
|   `-- zero3_offload.json
|-- LICENSE.md
|-- README.md
|-- nextgpt_trainer.py
|-- predict.py
|-- preprocess_embeddings.py
|-- requirements.txt
|-- train.py
|-- train_mem.py
`-- training_utils.py

2. Environment Preparation [Back to Top]

Please first clone the repo and install the required environment, which can be done by running the following commands:

conda env create -n nextgpt python=3.8

conda activate nextgpt

# CUDA 12.1
conda install pytorch==2.1.2 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia

git clone https://github.com/NExT-GPT/NExT-GPT.git
cd NExT-GPT

pip install -r requirements.txt

3. Training/Adapting NExt-GPT on Your Own

3.1. Preparing Pre-trained Checkpoint [Back to Top]

NExT-GPT is trained based on following excellent existing models. Please follow the instructions to prepare the checkpoints.

  • ImageBind is the unified image/video/audio encoder. The pre-trained checkpoint can be downloaded from here with version huge. Afterward, put the imagebind_huge.pth file at [.pretrain_ckpt/imagebind].
  • Vicuna: prepare the pretrained vicuna from [here]. Then put the pre-trained model at [./pretrain_ckpt/vicuna-7b-v1.5/].
  • Image Diffusion is used to generate images. NExT-GPT uses Stable Diffusion with version v2. (will be automatically downloaded)
  • Audio Diffusion for producing audio content. NExT-GPT employs AudioLDM with version l-full. (will be automatically downloaded)
  • Video Diffusion for the video generation. We employ ZeroScope with version v2_576w. (will be automatically downloaded)

3.2. Preparing Dataset [Back to Top]

Please download the following datasets used for model training:

A) T-X pairs data

B) Instruction data

3.3. Precomputing Embeddings [Back to Top]

In decoding-side alignment training, we minimize the distance between the representation of signal tokens and captions. To save costs of time and memory, we precompute the text embeddings for image, audio and video captions using the text encoder within the respective diffusion models.

Please run this command before the following training of NExT-GPT, where the produced embedding file will be saved at [./data/embed].

cd ./code/
python preprocess_embeddings.py ../data/T-X_pair_data/cc3m/cc3m_generation.json image ../data/embed/ stabilityai/stable-diffusion-2

Note of arguments:

  • args[1]: path of caption file;
  • args[2]: modality, which can be image, video, and audio;
  • args[3]: saving path of embedding file;
  • args[4]: corresponding pre-trained diffusion model name.

3.4. Training NExT-GPT [Back to Top]

First of all, please refer to the base configuration file [training_utils.py] for the basic system setting of overall modules, and dataset configuration nextgpt/dataset/catalog.py. The whole NExT-GPT training involves 3 steps:

  • Step-1: Encoding-side LLM-centric Multimodal Alignment. This stage trains the input projection layer while freezing the ImageBind, LLM, output projection layer.

    # Encoding-side LLM-centric Multimodal Alignment
    bash scripts/pretrain_enc.sh
    
  • Step-2: Decoding-side Instruction-following Alignment. This stage trains the output projection layers while freezing the ImageBind, LLM, input projection layers.

    # Encoding-side LLM-centric Multimodal Alignment
    bash scripts/pretrain_enc.sh
    
  • Step-3: Instruction Tuning. This stage instruction-tune 1) the LLM via LoRA, 2) input projection layer and 3) output projection layer on the instruction dataset.

    # Encoding-side LLM-centric Multimodal Alignment
    bash scripts/pretrain_enc.sh
    

4. Running NExT-GPT System [Back to Top]

4.1. Preparing Checkpoints

First, loading the pre-trained NExT-GPT system.

4.2. Run the Prediction

Upon completion of the checkpoint loading, you can run the prediction via:

python predict.py

5. Fine-tuning Your Own System [Back to Top]

5.1. Dataset

You can define your own dataset, please refer to the base_dataset.py, and then add the dataset catalog in catalog.py, including the target and parameters.

5.2. Model Framework

5.3. Fine-tuning

You can pre-define the model, data, and training parameters in training_utils.py. Please refer the finetune.sh for fine-tuning your own model.


Contact

For any questions or feedback, feel free to contact Shengqiong Wu and Hao Fei.

Citation

If you find NextGPT useful in your research or applications, please kindly cite:

@inproceedings{wu24next,
  title={{NE}x{T}-{GPT}: Any-to-Any Multimodal {LLM}},
  author={Wu, Shengqiong and Fei, Hao and Qu, Leigang and Ji, Wei and Chua, Tat-Seng},
  booktitle={Proceedings of the International Conference on Machine Learning},
  pages = {53366--53397},
  year={2024}
}

Acknowledgements

You may refer to related work that serves as foundations for our framework and code repository, Vicuna, ImageBind, Stable Diffusion, AudioLDM, and Zeroscope. We also partially draw inspirations from PandaGPT,
GILL, CoDi, Video-LLaMA, LLaVA, and MiniGPT-4. Thanks for their wonderful works.

License Notices

This repository is under BSD 3-Clause License. NExT-GPT is a research project intended for non-commercial use only. One must NOT use the code of NExT-GPT for any illegal, harmful, violent, racist, or sexual purposes. One is strictly prohibited from engaging in any activity that will potentially violate these guidelines. Any potential commercial use of this code should be approved by the authors.

Popular repositories Loading

  1. NExT-GPT NExT-GPT Public

    Code and models for NExT-GPT: Any-to-Any Multimodal Large Language Model

    Python 3.4k 344

  2. NExT-GPT.github.io NExT-GPT.github.io Public

    NExT-GPT: Any-to-Any Multimodal Large Language Model

    HTML 19 2