Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge develop up to 2024-01-11 to dev/ufs-weather-model #1342

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
27 commits
Select commit Hold shift + click to select a range
1cacc43
minor bugfix for matrix grepping on keywords (#1049)
mickaelaccensi Jul 31, 2023
dcafc8c
Stop masking group 1 output where icec > icen (#1019)
benoitp-cmc Aug 4, 2023
2715a9e
Doxygen documentation added, 8th subset.(#1046)
MatthewMasarik-NOAA Aug 7, 2023
b810a89
NC4 ,F90 ,XX0 switches removed from ww3_tp2.19 regtest (#1054)
Ghazal-Mohammadpour Aug 11, 2023
991daf8
CI: Fix for Intel scripts. GNU scripts updated. (#1064)
MatthewMasarik-NOAA Sep 2, 2023
6b9edfa
correct the computation of QP parameter, add QKK output parameter, ch…
mickaelaccensi Sep 14, 2023
8589d12
correct issue with ww3_multi when requesting restart2 and using nml f…
mickaelaccensi Sep 21, 2023
7bbdaca
correct calendar for track netcdf output (#1079)
mickaelaccensi Sep 22, 2023
b1356dd
Fix missing mod_def.ww3 file in multigrid regression tests for track …
ukmo-ccbunney Oct 10, 2023
d22b7bb
STAB3: fix cmake build for ST4 or ST3 (#1086)
MatthewMasarik-NOAA Oct 10, 2023
eff6686
new feature to output out_grd.ww3, out_pnt.ww3 and mod_def.ww3 both i…
mickaelaccensi Oct 12, 2023
d148d09
Update local unit number arrays (NDS, MDS) to be same size of array d…
ukmo-ccbunney Oct 16, 2023
66262f6
Removed code referencing PHIOC in output section for PHICE in ww3_oun…
ukmo-ccbunney Oct 18, 2023
8eb3596
implementation of the GQM (Gaussian Quadrature Method) to replace the…
mickaelaccensi Oct 19, 2023
4cd995d
update logic to ensure you are not accessing uninitialized dates (#1114)
JessicaMeixner-NOAA Oct 31, 2023
c3451a9
Initialised S and D arrays in W3SDB1 before potential early return if…
ukmo-ccbunney Nov 1, 2023
f702a8f
ww3_ounp.F90: x/y units attribute corrected from 'm' to 'km' (#1088)
Biao-Zhao Nov 2, 2023
1f928aa
Bugfix: Assign unit numbers to ASCII gridded/point output in multi-gr…
ukmo-ccbunney Nov 6, 2023
d90078b
correct bugs to run correctly GQM implementation (#1127)
mickaelaccensi Nov 28, 2023
3f35df7
Adding documentation to w3iopo() in preparation for code for #682. (#…
edwardhartnett Nov 30, 2023
ff1b9e9
NCEP regtest module updates: uses spack-stack/1.5.0, includes scotch/…
MatthewMasarik-NOAA Dec 7, 2023
d3ea810
Minor update to ncep regtests (#1138)
JessicaMeixner-NOAA Dec 12, 2023
88c89be
Updated intel workflow to install oneapi compilers from new location.…
edwardhartnett Dec 26, 2023
7bec560
Add unit test for points I/O code. (#1158)
edwardhartnett Jan 4, 2024
63f8270
Update Intel CI (relocate /usr/local; ensure intel-oneapi-mpi; use ub…
AlexanderRichert-NOAA Jan 11, 2024
2e49d78
Merge branch 'WW3develop20240111' into devufs20241211develop20240111
JessicaMeixner-NOAA Jan 3, 2025
174cf7b
update mds 13->15
JessicaMeixner-NOAA Jan 3, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/intel.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ concurrency:

# Set I_MPI_CC/F90 so Intel MPI wrapper uses icc/ifort instead of gcc/gfortran
env:
cache_key: intel12
cache_key: intel10-3
CC: icc
FC: ifort
CXX: icpc
Expand Down
122 changes: 122 additions & 0 deletions .github/workflows/io_gnu_yml.old
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
name: io_gnu
on: [push, pull_request, workflow_dispatch]

# Cancel in-progress workflows when pushing to a branch
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true

env:
cache_key: gnu11-1
CC: gcc-10
FC: gfortran-10
CXX: g++-10


# Split into a steup step, and a WW3 build step which
# builds multiple switches in a matrix. The setup is run once and
# the environment is cached so each build of WW3 can share the dependencies.

jobs:
setup:
runs-on: ubuntu-latest

steps:
- name: checkout-ww3
if: steps.cache-env.outputs.cache-hit != 'true'
uses: actions/checkout@v3
with:
path: ww3
# Cache spack, OASIS, and compiler
# No way to flush Action cache, so key may have # appended
- name: cache-env
id: cache-env
uses: actions/cache@v3
with:
path: |
spack
~/.spack
work_oasis3-mct
key: spack-${{ runner.os }}-${{ env.cache_key }}-${{ hashFiles('ww3/model/ci/spack_gnu.yaml') }}

# Build WW3 spack environment
- name: install-dependencies-with-spack
if: steps.cache-env.outputs.cache-hit != 'true'
run: |
# Install NetCDF, ESMF, g2, etc using Spack
sudo apt install cmake
git clone -c feature.manyFiles=true https://github.com/JCSDA/spack.git
source spack/share/spack/setup-env.sh
spack env create ww3-gnu ww3/model/ci/spack_gnu.yaml
spack env activate ww3-gnu
spack compiler find
spack external find cmake
spack add mpich@3.4.2
spack concretize
spack install --dirty -v

- name: build-oasis
if: steps.cache-env.outputs.cache-hit != 'true'
run: |
source spack/share/spack/setup-env.sh
spack env activate ww3-gnu
export WWATCH3_DIR=${GITHUB_WORKSPACE}/ww3/model
export OASIS_INPUT_PATH=${GITHUB_WORKSPACE}/ww3/regtests/ww3_tp2.14/input/oasis3-mct
export OASIS_WORK_PATH=${GITHUB_WORKSPACE}/ww3/regtests/ww3_tp2.14/input/work_oasis3-mct
cd ww3/regtests/ww3_tp2.14/input/oasis3-mct/util/make_dir
cmake .
make VERBOSE=1
cp -r ${GITHUB_WORKSPACE}/ww3/regtests/ww3_tp2.14/input/work_oasis3-mct ${GITHUB_WORKSPACE}

io_gnu:
needs: setup
runs-on: ubuntu-latest

steps:
- name: install-dependencies
run: |
sudo apt-get update
sudo apt-get install doxygen gcovr valgrind

- name: checkout-ww3
uses: actions/checkout@v3
with:
path: ww3

- name: cache-env
id: cache-env
uses: actions/cache@v3
with:
path: |
spack
~/.spack
work_oasis3-mct
key: spack-${{ runner.os }}-${{ env.cache_key }}-${{ hashFiles('ww3/model/ci/spack_gnu.yaml') }}

- name: build-ww3
run: |
source spack/share/spack/setup-env.sh
spack env activate ww3-gnu
set -x
cd ww3
export CC=mpicc
export FC=mpif90
export OASISDIR=${GITHUB_WORKSPACE}/work_oasis3-mct
mkdir build && cd build
export LD_LIBRARY_PATH="/home/runner/work/WW3/WW3/spack/var/spack/environments/ww3-gnu/.spack-env/view/:$LD_LIBRARY_PATH"
cmake -DSWITCH=${GITHUB_WORKSPACE}/ww3/regtests/unittests/data/switch.io -DCMAKE_BUILD_TYPE=Debug -DCMAKE_Fortran_FLAGS="-g -fprofile-abs-path -fprofile-arcs -ftest-coverage -O0 -Wall -fno-omit-frame-pointer -fsanitize=address" -DCMAKE_C_FLAGS="-g -fprofile-abs-path -fprofile-arcs -ftest-coverage -O0 -Wall -fno-omit-frame-pointer -fsanitize=address" ..
make -j2 VERBOSE=1
./bin/ww3_grid
mv mod_def.ww3 regtests/unittests
ctest --verbose --output-on-failure --rerun-failed
gcovr --root .. -v --html-details --exclude ../regtests/unittests --exclude CMakeFiles --print-summary -o test-coverage.html &> /dev/null

- name: upload-test-coverage
uses: actions/upload-artifact@v3
with:
name: ww3-test-coverage
path: |
ww3/build/*.html
ww3/build/*.css


6 changes: 6 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -66,3 +66,9 @@ if(NOT CMAKE_BUILD_TYPE MATCHES "^(Debug|Release|RelWithDebInfo|MinSizeRel)$")
endif()

add_subdirectory(model)

# Turn on unit testing.
include(CTest)
if(BUILD_TESTING)
add_subdirectory(regtests/unittests)
endif()
3 changes: 3 additions & 0 deletions manual/defs.tex
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,9 @@
\newcommand{\cR}{{\cal R}}
\newcommand{\cS}{{\cal S}}

\newcommand{\rd}{{\mathrm d}}


\newcommand{\marbox}[1]{\marginpar{\fbox{{\small #1}}}}

\newcommand{\proddefH}[3]{
Expand Down
143 changes: 102 additions & 41 deletions manual/eqs/NL1.tex
Original file line number Diff line number Diff line change
@@ -1,65 +1,92 @@
\vsssub
\subsubsection{~$S_{nl}$: Discrete Interaction Approximation (\dia)} \label{sec:NL1}
\vsssub

\opthead{NL1}{\wam\ model}{H. L. Tolman}

\noindent
Nonlinear wave-wave interactions can be modeled using the discrete interaction
approximation \citep[\dia,][]{art:Hea85b}. This parameterization was


Resonant nonlinear interactions occur between four wave components
(quadruplets) with wavenumber vector $\bk$, $\bk_1$, $\bk_2$ and $\bk_3$ are such that
% eq:resonance
\begin{equation} \left .
\begin{array}{ccc}
\bk + \bk_1 & = & \bk_2 + \bk_3 \\
f_r + f_{r,1}& =& f_{r,2} + f_{r,3}
\end{array} \:\:\: \right \rbrace \:\:\: , \label{eq:resonance}
\end{equation}

Nonlinear 4-wave interaction theories were
originally developed for the spectrum $F(f_r ,\theta)$. To assure the
conservative nature of $S_{nl}$ for this spectrum (which can be considered as
the "final product" of the model), this source term is calculated for
$F(f_r,\theta)$ instead of $N(k,\theta)$, using the conversion
(\ref{eq:jac_fr}).

Resonant nonlinear interactions occur between four wave components
(quadruplets) with wavenumber vector $\bk_1$ through $\bk_4$. In the \dia, it
is assumed that $\bk_1 = \bk_2$. Resonance conditions then require that
%--------------------------%
% Resonance conditions DIA %
%--------------------------%
\vsssub
\subsubsection{~$S_{nl}$: Discrete Interaction Approximation (\dia)} \label{sec:NL1}
\vsssub

\opthead{NL1}{\wam\ model}{H. L. Tolman}



In the \dia, for each component $\bk$, only 2 quadruplets configuration are
used, while there should be thousands for the full integral, and the interaction caused by these 2 quadruplets
is scaled so that it gives the right order of magnitude for the flux of energy towards low frequencies.

Both quadruplets used the DIA use
% eq:resonance
\begin{equation} \left .
\begin{array}{ccc}
\bk_1 + \bk_2 & = & \bk_3 + \bk_4 \\
\sigma_2 & = & \sigma_1 \\
\sigma_3 & = & (1+\lambda_{nl})\sigma_1 \\
\sigma_4 & = & (1-\lambda_{nl})\sigma_1
\end{array} \:\:\: \right \rbrace \:\:\: , \label{eq:resonance}
\bk_1 & = & \bk\\
f_{r,2} & = & (1+\lambda)f_{r} \\
f_{r,3} & = & (1-\lambda)f_{r}
\end{array} \:\:\: \right \rbrace \:\:\: , \label{eq:DIAchoice}
\end{equation}
where $\lambda$ is a constant, usually 0.25, and they only differ by the choice of the interacting angles
taking either a plus sign or a minus sign in the following
\begin{equation} \left .
\begin{array}{ccc}
\theta_{2,\pm} & = & \theta \pm \delta_{\theta,2} \\
\theta_{3,\pm} & = & \theta \mp \delta_{\theta,3} \\
\end{array} \:\:\: \right \rbrace \:\:\: , \label{eq:DIAangles}
\end{equation}
where $\lambda_{nl}$ is a constant. For these quadruplets, the contribution
$\delta S_{nl}$ to the interaction for each discrete $(f_r,\theta)$
combination of the spectrum corresponding to $\bk_1$ is calculated as
where $\delta_{\theta,2}$ and $\delta_{\theta,3}$ are only a function of $\lambda$ given by the geometry of
the interacting wavenumbers along the "figure of 8", namely
\begin{eqnarray}
\cos(\delta_{\theta,2})&=&(1-\lambda)^4+4-(1+\lambda)^4)/[4(1-\lambda)^2], \\
\sin(\delta_{\theta,3})&=&\sin(\delta_{\theta,2}) (1-\lambda)^2/(1+\lambda)^2.
\end{eqnarray}

Hence for any $\bk$ one quadruplet selects $\bk_{2,+}$ and $\bk_{3,+}$, and the other quadruplet selects its mirror image
$\bk_{2,-}$, $\bk_{2,-}$. Because there are 3 different components interacting in the two DIA-selected quadruplets, any discrete spectral component $(f_r,\theta)$ is actually involved in 6 quadruplets and directly exchanges energy with 12 other components $(f_r',\theta')$. Because the values of $f'_r$ and $\theta'$ do not fall exacly on other discrete components, the spectral density is interpolated using a bilinear interpolation, so that each source term value
$S_{nl}(\bk)$ contains the direct exchange of energy with 48 other discrete components.
we compute the three contributions that correspond to the situation in which $\bk$ takes the role of $\bk$,$\bk_{2,+}$, $\bk_{2,-}$, $\bk_{3,+}$ and $\bk_{3,-}$ in the quadruplet, namely the full source term is, without making explicit that bilinear interpolation,
\begin{eqnarray}
S_{\mathrm{nl}}(\bk) &=& -2 \left[\delta S_{\mathrm{nl}}(\bk,\bk_{2,+},\bk_{3,+})+\delta S_{\mathrm{nl}}(\bk,\bk_{2,-},\bk_{3,-})\right] \nonumber \\
& & + \delta S_{\mathrm{nl}}(\bk_4,\bk,\bk_5) + \delta S_{\mathrm{nl}}(\bk_6,\bk,\bk_7) \\
& & + \delta S_{\mathrm{nl}}(\bk_8,\bk_9,\bk) + \delta S_{\mathrm{nl}}(\bk_{10},\bk_{11},\bk) . \label{eq:diasum}
\end{eqnarray}
where the geometry of the quadruplet $(\bk_4,\bk_4,\bk,\bk_5)$ is obtained from that of $(\bk,\bk,\bk_{2,+},\bk_{3,+})$ by a dilation by a factor $(1+\lambda)^2$ and rotation by the angle $\delta_{\theta,2}$; $(\bk_6,\bk_6,\bk,\bk_7)$ has the same dilation but the opposite rotation; $(\bk_8,\bk_8,\bk_9,\bk)$ is dilated by a factor $(1-\lambda)^2$ and rotated by the angle $-\delta_{\theta,3}$: and $(\bk_{10},\bk_{10},\bk_{11},\bk)$ is dilated by the same factor and rotated by the opposite angle.


The elementary contributions $\delta S_{\mathrm{nl}}(\bk_l,\bk_m,\bk_n)$ are given by
%----------------------------%
% Nonlinear interactions DIA %
%----------------------------%
% eq:snl_dia
\begin{eqnarray}
\left ( \begin{array}{c}
\delta S_{nl,1} \\ \delta S_{nl,3} \\ \delta S_{nl,4}
\end{array} \right ) & = & D
\left ( \begin{array}{r} -2 \\ 1 \\ 1 \end{array} \right )
C g^{-4} f_{r,1}^{11} \times \nonumber \\
& & \left [ F_1^2
\left ( \frac{F_3}{(1+\lambda_{nl})^4} +
\frac{F_4}{(1-\lambda_{nl})^4} \right ) -
\frac{2 F_1 F_3 F_4}{(1-\lambda_{nl}^2)^4}
\right ] \: , \label{eq:snl_dia}
\end{eqnarray}
where $F_1 = F(f_{r,1} ,\theta_1 )$ etc. and $\delta S_{nl,1} = \delta
S_{nl}(f_{r,1} ,\theta_1 )$ etc., $C$ is a proportionality constant. The
nonlinear interactions are calculated by considering a limited number of
combinations $(\lambda_{nl},C)$. In practice, only one combination is
used. Default values for different source term packages are presented in
Table~\ref{tab:snl_par}.

\begin{equation}
\delta S_{\mathrm{nl}}(\bk_l,\bk_m,\bk_n) = \frac{C}{g^4} f_{r,l}^{11} \left [ F_l^2 \left ( \frac{F_m}{(1+\lambda)^4} +
\frac{F_n}{(1-\lambda)^4} \right ) - \frac{2 F_l F_m F_n}{(1-\lambda^2)^4} \right] ,
\label{eq:snl_dia}
\end{equation}
where the spectral densities are $F_l = F(f_{r,l} ,\theta_l)$, etc.
$C$ is a proportionality constant that was tuned to reproduce the inverse energy cascade. Default values for different source term packages are presented in Table~\ref{tab:snl_par}.


% tab:snl_par

\begin{table} \begin{center}
\begin{tabular}{|l|c|c|} \hline
& $\lambda_{nl}$ & $C$ \\ \hline
& $\lambda$ & $C$ \\ \hline
ST6 & 0.25 & $3.00 \; 10^7$ \\ \hline
\wam-3 & 0.25 & $2.78 \; 10^7$ \\ \hline
ST4 (Ardhuin et al.)& 0.25 & $2.50 \; 10^7$ \\ \hline
Expand All @@ -68,7 +95,7 @@ \subsubsection{~$S_{nl}$: Discrete Interaction Approximation (\dia)} \label{sec:
\caption{Default constants in \dia\ for input-dissipation packages.}
\label{tab:snl_par} \botline \end{table}

This source term is developed for deep water, using the appropriate dispersion
This parameterization was developed for deep water, using the appropriate dispersion
relation in the resonance conditions. For shallow water the expression is
scaled by the factor $D$ (still using the deep-water dispersion relation,
however)
Expand Down Expand Up @@ -132,3 +159,37 @@ \subsubsection{~$S_{nl}$: Discrete Interaction Approximation (\dia)} \label{sec:
above constants can be reset by the user in the input files of the
model (see \para\ref{sub:ww3grid}).

\vsssub
\subsubsection{~$S_{nl}$: Gaussian Quadrature Method (\dia)} \label{sec:GQM}
\vsssub

\opthead{NL1 , but with a negative IQTYPE}{TOMAWAC model, M. Benoit}{adaptation to WW3 by S. Siadatmousavi \& F. Ardhuin}

\noindent
Changing the namelist parameter IQTYPE to a negative value replaces the
DIA parameterization with the possibility to perform an exact but fast cal-
culation of $S_{\mathrm{nl}}$ using the Gaussian Quadrature Method of \cite{Lavrenov2001}.
More details can be found in \cite{Gagnaire-Renou2009}.


The quadruplet configurations that are used correspond to the three integrals over $f_1$, $f_2$ and $\theta_1$, with all other frequencies and directions given by the resonance conditions (\ref{eq:resonance}) with only one ambiguity on the angle $\theta_2$ which can be defined by a sign index $s$, as in the DIA. Starting from eq. (A4) in \cite{Lavrenov2001} as writen in (2.25) of \cite{Gagnaire-Renou2009}, the source term is
\begin{equation}
S_{\mathrm{nl}}(\sigma,\theta) = 8 \sum_s \int_{\sigma_1=0}^\infty \int_{\theta_1=0}^{2 \pi} \int_{\sigma_2=0}^{(\sigma+\sigma_1)/2} T \frac{F_2 F_3 (F \sigma_1^4 + F_1 \sigma^4) - F F_1 (F_2 \sigma_3^4 + F_3 \sigma_2^4)}{\sqrt{B}\sqrt{((\left| \bk+\bk_1 \right|/g- \sigma_3^2)^2-\sigma_2^4} } {\mathrm d}\sigma_1 {\mathrm d}\theta_1 {\mathrm d}\sigma_2 ,
\label{eq:snl_gqm}
\end{equation}
where $B$ is given by eq. (A5) of Lavrenov (2001) and
\begin{equation}
T(\bk,\bk_1,\bk_2,\bk_3) = \frac{\pi g^2 D^2(\bk,\bk_1,\bk_2,\bk_3) }{4 \sigma \sigma_1 \sigma_2 \sigma_3}
\end{equation}
where $ D(\bk,\bk_1,\bk_2,\bk_3)$ is given by \cite{Webb1978} in his eq. (A1).

This triple integral is performed using quadrature functions to best resolve the effect of the singularities in the denominator. It is thus replaced with weighted sums over the 3 dimensions.

Compared to the DIA, there is no bilinear interpolation and the nearest neighbor is used in frequency and direction. Also,
the source term is computed by a loop over the quadruplet configuration, which allows for filtering based on
both the value of the coupling coefficient and the energy level at the frequency corresponding to $\bk$. Within
that loop, the source term contribution is computed for all 4 interacting components, so that any filtering still
conserves energy, action, momentum ... (One may argue that this multiplies by 4 the number of calculations, but it may have the benefit of properly dealing with the high frequency boundary... this is to be verified. The same question arises for the DIA: why have the wavenumber $\bk$ play the role of the other members of the quadruplets when this will also be computed as we loop on the spectral components?).

If a very aggressive filtering is performed, the source may need to be rescaled.

15 changes: 11 additions & 4 deletions manual/eqs/output.tex
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,9 @@ \subsection{~Output parameters} \label{sub:outpars}
in \para\ref{sec:ww3shel}. That input file also provides a list of flags
indicating if output parameters are available in different field
output file types (ASCII, grib, igrads, NetCDF).
For any details on how these parameters are computed, the user may read the code of the {\code w3iogo} routine, in the {\code w3iogomd.ftn} module.
For any details on how these parameters are computed, the user may read the code of the {\code w3iogo} routine, in the {\code w3iogomd.F90} module.

Selection of field outputs in {\code ww3\_shel.inp} is most easily performed by providing a list of the
Selection of field outputs in {\code ww3\_shel.nml} or {\code ww3\_shel.inp} is most easily performed by providing a list of the
requested parameters, for example, {\textbf HS DIR SPR} will request the calculation of significant wave height, mean direction and directional spread. These will thus be stored in the {\code out\_grd.XX} file and can be post-processed, for example in NetCDF using {\code ww3\_ouf}. Examples are given in \para\ref{sec:ww3multi} and
\para\ref{sec:ww3ounf}. The names for these namelists are the bold names below, for
example \textbf{HS}.
Expand All @@ -26,6 +26,9 @@ \subsection{~Output parameters} \label{sub:outpars}
file extensions, NetCDF variable names and namelist-based selection (see
also \para\ref{sec:ww3ounf}), and the long parameter name/definition.

When the result is not overly sensitive to the contribution of the unresolved part of the spectrum (for $f<f_{NK}$), the contribution of the tail is parameterized assuming a power law decay of the spectrum, by default $E(f,\theta) = E(f_{NK},\theta) (f_{NK}/f)^{-5}$, for some parameters this is either unnecessary or misleading, and the integrals are computed only up to $f_{NK}$.


Finally we note that in all definitions the frequency is the \emph{relative} frequency. Thus, in the presence of currents, these can only be compared to drifting measurement data or data obtained in wavenumber and converted to frequency. Comparison to fixed instrument data requires the use of the full spectrum and proper conversion to the fixed reference frame.

\begin{list}{\Roman{outgrps})\hfill}
Expand Down Expand Up @@ -300,8 +303,12 @@ \subsection{~Output parameters} \label{sub:outpars}
\item \textbf{MSD} Direction of the maximum slope variance mss$_u$
\item \textbf{MCD} Spectral tail direction
\item \textbf{QP} Peakedness parameter \citep{art:G70}
\begin{equation} Q_p = \frac{2}{E^2} \int_0^{2\pi} \int_0^\infty
\sigma\:F(\sigma,\theta)^2\:d\sigma\:d\theta \: \label{eq:qp}
\begin{equation} Q_p = \frac{2}{E^2} \int_0^{f_{NK}} f \left( \int_0^{2\pi}
F(f,\theta) \:\rd \theta \right)^2 \: \rd f \: \label{eq:qp}
\end{equation}
\item \textbf{QKK} wavenumber peakedness \citep{art:DC23}
\begin{equation} Q_{kk} = \frac{1}{E^2} \int_0^{f_{NK}} \int_0^{2\pi}
0.5 \left[ A(k,\theta)+ A(k,\theta+\pi)\right]^2 \frac{\sigma^2}{k C_g} \:\rd \theta \: \rd \sigma \: \label{eq:qkk}
\end{equation}
\end{list}

Expand Down
2 changes: 1 addition & 1 deletion manual/impl/switch.tex
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ \subsubsection{~Mandatory switches} \label{sub:man_switch}
Selection of nonlinear interactions:
\begin{slist}
\sit{nl0} {No nonlinear interactions used.}
\sit{nl1} {Discrete interaction approximation (\dia).}
\sit{nl1} {Discrete interaction approximation (\dia) or Gaussian Quadrature Method (GQM).}
\sit{nl2} {Exact interaction approximation (\xnl).}
\sit{nl3} {Generalized Multiple \dia\ (\gmd).}
\sit{nl4} {Two-scale approximation (TSA).}
Expand Down
Loading
Loading