Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/nr_pf_solver #54

Merged
merged 24 commits into from
Jan 16, 2025
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
InfrastructureSystems = "2cd47ed4-ca9b-11e9-27f2-ab636a7671f1"
JSON3 = "0f8b85d8-7281-11e9-16c2-39a750bddbf1"
KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56"
Expand All @@ -22,6 +23,7 @@ DataStructures = "0.18"
Dates = "1"
InfrastructureSystems = "2"
JSON3 = "1"
KLU = "^0.6"
LinearAlgebra = "1"
Logging = "1"
NLsolve = "4"
Expand Down
8 changes: 6 additions & 2 deletions src/PowerFlowData.jl
Original file line number Diff line number Diff line change
Expand Up @@ -157,7 +157,7 @@ NOTE: use it for AC power flow computations.
WARNING: functions for the evaluation of the multi-period AC PF still to be implemented.
"""
function PowerFlowData(
::ACPowerFlow,
::ACPowerFlow{<:ACPowerFlowSolverType},
sys::PSY.System;
time_steps::Int = 1,
timestep_names::Vector{String} = String[],
Expand Down Expand Up @@ -440,7 +440,11 @@ Create an appropriate `PowerFlowContainer` for the given `PowerFlowEvaluationMod
"""
function make_power_flow_container end

make_power_flow_container(pfem::ACPowerFlow, sys::PSY.System; kwargs...) =
make_power_flow_container(
pfem::ACPowerFlow{<:ACPowerFlowSolverType},
sys::PSY.System;
kwargs...,
) =
PowerFlowData(pfem, sys; kwargs...)

make_power_flow_container(pfem::DCPowerFlow, sys::PSY.System; kwargs...) =
Expand Down
6 changes: 5 additions & 1 deletion src/PowerFlows.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,10 @@ export solve_powerflow
export solve_ac_powerflow!
export PowerFlowData
export DCPowerFlow
export NLSolveACPowerFlow
export KLUACPowerFlow
export ACPowerFlow
rbolgaryn marked this conversation as resolved.
Show resolved Hide resolved
export ACPowerFlowSolverType
export PTDFDCPowerFlow
export vPTDFDCPowerFlow
export PSSEExportPowerFlow
Expand All @@ -20,6 +23,7 @@ import PowerSystems
import PowerSystems: System
import LinearAlgebra
import NLsolve
import KLU
import SparseArrays
import InfrastructureSystems
import PowerNetworkMatrices
Expand All @@ -40,6 +44,6 @@ include("psse_export.jl")
include("solve_dc_powerflow.jl")
include("ac_power_flow.jl")
include("ac_power_flow_jacobian.jl")
include("nlsolve_ac_powerflow.jl")
include("newton_ac_powerflow.jl")
include("post_processing.jl")
end
3 changes: 3 additions & 0 deletions src/definitions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,4 +10,7 @@ const DEFAULT_MAX_REDISTRIBUTION_ITERATIONS = 10

const ISAPPROX_ZERO_TOLERANCE = 1e-6

const DEFAULT_NR_MAX_ITER::Int64 = 30 # default maxIter for the NR power flow
const DEFAULT_NR_TOL::Float64 = 1e-9 # default tolerance for the NR power flow

const AC_PF_KW = []
266 changes: 266 additions & 0 deletions src/newton_ac_powerflow.jl
rbolgaryn marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,266 @@
"""
Solves a the power flow into the system and writes the solution into the relevant structs.
Updates generators active and reactive power setpoints and branches active and reactive
power flows (calculated in the From - To direction) (see
[`flow_val`](@ref))

Supports passing NLsolve kwargs in the args. By default shows the solver trace.

Arguments available for `nlsolve`:

- `get_connectivity::Bool`: Checks if the network is connected. Default true
- `method` : See NLSolve.jl documentation for available solvers
- `xtol`: norm difference in `x` between two successive iterates under which
convergence is declared. Default: `0.0`.
- `ftol`: infinite norm of residuals under which convergence is declared.
Default: `1e-8`.
- `iterations`: maximum number of iterations. Default: `1_000`.
- `store_trace`: should a trace of the optimization algorithm's state be
stored? Default: `false`.
- `show_trace`: should a trace of the optimization algorithm's state be shown
on `STDOUT`? Default: `false`.
- `extended_trace`: should additifonal algorithm internals be added to the state
trace? Default: `false`.

## Examples

```julia
solve_ac_powerflow!(sys)
# Passing NLsolve arguments
solve_ac_powerflow!(sys, method=:newton)
```
"""
function solve_ac_powerflow!(
pf::ACPowerFlow{<:ACPowerFlowSolverType},
system::PSY.System;
kwargs...,
)
#Save per-unit flag
settings_unit_cache = deepcopy(system.units_settings.unit_system)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(also do this in solve_powerflow, etc.)

#Work in System per unit
PSY.set_units_base_system!(system, "SYSTEM_BASE")
check_reactive_power_limits = get(kwargs, :check_reactive_power_limits, false)
data = PowerFlowData(
pf,
system;
check_connectivity = get(kwargs, :check_connectivity, true),
)
max_iterations = DEFAULT_MAX_REDISTRIBUTION_ITERATIONS
converged, x = _solve_powerflow!(pf, data, check_reactive_power_limits; kwargs...)
if converged
write_powerflow_solution!(system, x, max_iterations)
@info("PowerFlow solve converged, the results have been stored in the system")
#Restore original per unit base
PSY.set_units_base_system!(system, settings_unit_cache)
return converged
end
@error("The powerflow solver returned convergence = $(converged)")
PSY.set_units_base_system!(system, settings_unit_cache)
return converged
end

"""
Similar to solve_powerflow!(sys) but does not update the system struct with results.
Returns the results in a dictionary of dataframes.

## Examples

```julia
res = solve_powerflow(sys)
# Passing NLsolve arguments
res = solve_powerflow(sys, method=:newton)
```
"""
function solve_powerflow(
pf::ACPowerFlow{<:ACPowerFlowSolverType},
system::PSY.System;
kwargs...,
)
#Save per-unit flag
settings_unit_cache = deepcopy(system.units_settings.unit_system)
#Work in System per unit
PSY.set_units_base_system!(system, "SYSTEM_BASE")
data = PowerFlowData(
pf,
system;
check_connectivity = get(kwargs, :check_connectivity, true),
)

converged, x = _solve_powerflow!(pf, data, pf.check_reactive_power_limits; kwargs...)

if converged
@info("PowerFlow solve converged, the results are exported in DataFrames")
df_results = write_results(pf, system, data, x)
#Restore original per unit base
PSY.set_units_base_system!(system, settings_unit_cache)
return df_results
end
@error("The powerflow solver returned convergence = $(converged)")
PSY.set_units_base_system!(system, settings_unit_cache)
return converged
end

function _check_q_limit_bounds!(data::ACPowerFlowData, zero::Vector{Float64})
bus_names = data.power_network_matrix.axes[1]
within_limits = true
for (ix, b) in enumerate(data.bus_type)
if b == PSY.ACBusTypes.PV
Q_gen = zero[2 * ix - 1]
else
continue
end

if Q_gen <= data.bus_reactivepower_bounds[ix][1]
@info "Bus $(bus_names[ix]) changed to PSY.ACBusTypes.PQ"
within_limits = false
data.bus_type[ix] = PSY.ACBusTypes.PQ
data.bus_reactivepower_injection[ix] = data.bus_reactivepower_bounds[ix][1]
elseif Q_gen >= data.bus_reactivepower_bounds[ix][2]
@info "Bus $(bus_names[ix]) changed to PSY.ACBusTypes.PQ"
within_limits = false
data.bus_type[ix] = PSY.ACBusTypes.PQ
data.bus_reactivepower_injection[ix] = data.bus_reactivepower_bounds[ix][2]
else
@debug "Within Limits"
end
end
return within_limits
end

function _solve_powerflow!(
pf::ACPowerFlow{<:ACPowerFlowSolverType},
data::ACPowerFlowData,
check_reactive_power_limits;
nlsolve_kwargs...,
)
if check_reactive_power_limits
for _ in 1:MAX_REACTIVE_POWER_ITERATIONS
converged, x = _newton_powerflow(pf, data; nlsolve_kwargs...)
if converged
if _check_q_limit_bounds!(data, x)
return converged, x
end
else
return converged, x
end
end
else
return _newton_powerflow(pf, data; nlsolve_kwargs...)
end
end

function _newton_powerflow(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Shouldn't this be nlsolve_powerflow?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We are relying on multiple dispatch here to go to KLU or NLSolve from solve_powerflow(...)

pf::ACPowerFlow{NLSolveACPowerFlow},
data::ACPowerFlowData;
nlsolve_kwargs...,
)
pf = PolarPowerFlow(data)
J = PowerFlows.PolarPowerFlowJacobian(data, pf.x0)

df = NLsolve.OnceDifferentiable(pf, J, pf.x0, pf.residual, J.Jv)
res = NLsolve.nlsolve(df, pf.x0; nlsolve_kwargs...)
if !res.f_converged
@error(
"The powerflow solver NLSolve did not converge (returned convergence = $(res.f_converged))"
)
end
return res.f_converged, res.zero
end

function _newton_powerflow(
pf::ACPowerFlow{KLUACPowerFlow},
data::ACPowerFlowData;
nlsolve_kwargs...,
)
# Fetch maxIter and tol from kwargs, or use defaults if not provided
maxIter = get(nlsolve_kwargs, :maxIter, DEFAULT_NR_MAX_ITER)
tol = get(nlsolve_kwargs, :tol, DEFAULT_NR_TOL)
i = 0

pf = PolarPowerFlow(data)

# Find indices for each bus type
ref = findall(x -> x == PowerSystems.ACBusTypesModule.ACBusTypes.REF, data.bus_type)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nitpick: eliminate duplication

pv = findall(x -> x == PowerSystems.ACBusTypesModule.ACBusTypes.PV, data.bus_type)
pq = findall(x -> x == PowerSystems.ACBusTypesModule.ACBusTypes.PQ, data.bus_type)

Vm = data.bus_magnitude[:]
# prevent unfeasible starting values for Vm; for pv and ref buses we cannot do this:
Vm[pq] = clamp.(Vm[pq], 0.9, 1.1)
Va = data.bus_angles[:]
V = Vm .* exp.(1im * Va)

Ybus = data.power_network_matrix.data

Sbus =
data.bus_activepower_injection[:] - data.bus_activepower_withdrawals[:] +
1im * (data.bus_reactivepower_injection[:] - data.bus_reactivepower_withdrawals[:])

mis = V .* conj(Ybus * V) - Sbus
F = [real(mis[[pv; pq]]); imag(mis[pq])]
rbolgaryn marked this conversation as resolved.
Show resolved Hide resolved

# nref = length(ref)
npv = length(pv)
npq = length(pq)

converged = (npv + npq) == 0 # if only ref buses present, we do not need to enter the loop

while i < maxIter && !converged
i += 1
diagV = LinearAlgebra.Diagonal(V)
diagIbus = LinearAlgebra.Diagonal(Ybus * V)
diagVnorm = LinearAlgebra.Diagonal(V ./ abs.(V))
dSbus_dVm = diagV * conj(Ybus * diagVnorm) + conj(diagIbus) * diagVnorm
dSbus_dVa = 1im * diagV * conj(diagIbus - Ybus * diagV)
rbolgaryn marked this conversation as resolved.
Show resolved Hide resolved

j11 = real(dSbus_dVa[[pv; pq], [pv; pq]])
j12 = real(dSbus_dVm[[pv; pq], pq])
j21 = imag(dSbus_dVa[pq, [pv; pq]])
j22 = imag(dSbus_dVm[pq, pq])
J = [j11 j12; j21 j22]
rbolgaryn marked this conversation as resolved.
Show resolved Hide resolved

factor_J = KLU.klu(J)
dx = -(factor_J \ F)

Va[pv] .+= dx[1:npv]
Va[pq] .+= dx[(npv + 1):(npv + npq)]
Vm[pq] .+= dx[(npv + npq + 1):(npv + 2 * npq)]

V = Vm .* exp.(1im * Va)

Vm = abs.(V)
Va = angle.(V)

mis = V .* conj(Ybus * V) - Sbus
F = [real(mis[[pv; pq]]); imag(mis[pq])]
rbolgaryn marked this conversation as resolved.
Show resolved Hide resolved
converged = LinearAlgebra.norm(F, Inf) < tol
end

if !converged
@error("The powerflow solver with KLU did not converge after $i iterations")
else
@debug("The powerflow solver with KLU converged after $i iterations")
end

# mock the expected x format, where the values depend on the type of the bus:
n_buses = length(data.bus_type)
x = zeros(Float64, 2 * n_buses)
Sbus_result = V .* conj(Ybus * V)
for (ix, b) in enumerate(data.bus_type)
if b == PSY.ACBusTypes.REF
# When bustype == REFERENCE PSY.Bus, state variables are Active and Reactive Power Generated
x[2 * ix - 1] = real(Sbus_result[ix]) + data.bus_activepower_withdrawals[ix]
x[2 * ix] = imag(Sbus_result[ix]) + data.bus_reactivepower_withdrawals[ix]
elseif b == PSY.ACBusTypes.PV
# When bustype == PV PSY.Bus, state variables are Reactive Power Generated and Voltage Angle
x[2 * ix - 1] = imag(Sbus_result[ix]) + data.bus_reactivepower_withdrawals[ix]
x[2 * ix] = Va[ix]
elseif b == PSY.ACBusTypes.PQ
# When bustype == PQ PSY.Bus, state variables are Voltage Magnitude and Voltage Angle
x[2 * ix - 1] = Vm[ix]
x[2 * ix] = Va[ix]
end
end

return converged, x
end
Loading
Loading