Skip to content

Commit

Permalink
Merge pull request #480 from NREL/mbbruch_new_taconite
Browse files Browse the repository at this point in the history
Updates from Taconite branches
  • Loading branch information
mbbruch authored Oct 24, 2023
2 parents 968da39 + aef9b1d commit 360dfae
Show file tree
Hide file tree
Showing 39 changed files with 127,648 additions and 1,388 deletions.
193 changes: 193 additions & 0 deletions Case Study/RolloutCompileAndPlot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 22 16:37:23 2023
@author: ganderson
"""

import pandas as pd
import json
import glob
import os
import SwRIPlot
import plotly.express as px



DemandFolder = 'D:/Projects/ALTRIOS/TaconiteHacking/Case Study/Conventional Freight Rollout Results'
RolloutFolder = 'D:/Projects/ALTRIOS/TaconiteHacking/Case Study/Rollout Results'
DemandFiles = glob.glob(DemandFolder + '/Taconite Base Demand*.csv')
RolloutMetricFiles = glob.glob(RolloutFolder + '/Metrics*.xlsx')

# DemandFolder = 'D:/Projects/ALTRIOS/TaconiteHacking/Case Study/Convention Freight Rollout Results Minneapolis'
# RolloutFolder = 'D:/Projects/ALTRIOS/TaconiteHacking/Case Study/Rollout Results Minneapolis'
# DemandFiles = glob.glob(DemandFolder + '/Minn* Base Demand*.csv')
# RolloutMetricFiles = glob.glob(RolloutFolder + '/Metrics*.xlsx')





TrainCountDict = {"Taconite Base Demand2095.csv" : "3 Trains Per Day",
"Taconite Base Demand2067.csv" : "1 Train Per Day",
"Taconite Base Demand2080.csv" : "2 Trains Per Day",
"Minneapolis Base Demand2068.csv" : "3 Trains Per Day",
"Minneapolis Base Demand2045.csv" : "1 Train Per Day",
"Minneapolis Base Demand2055.csv" : "2 Trains Per Day"}



def TotalDemand(DemandData, DemandFile):
SubSet = DemandData[DemandData.File == DemandFile]
return SubSet['Number_of_Cars'].sum()



TempList = []
for File in DemandFiles:
Temp = pd.read_csv(File)
Temp['File'] = os.path.basename(File)
TempList.append(Temp.copy())

DemandData = pd.concat(TempList)
DemandData = DemandData.drop('Unnamed: 0', axis=1)

TempList = []
for File in RolloutMetricFiles:
Temp = pd.read_excel(File)
Temp['File'] = os.path.basename(File).split('_')[2].replace('.xlsx','.csv')
# TempSeries = Temp.iloc[0,:]
# TempSeries['Metric'] = os.path.basename(File).split('_')[1].replace('.xlsx','.csv')
# TempSeries.Units = ''
TempList.append(Temp.copy())

RolloutMetricData = pd.concat(TempList)
RolloutMetricData['Column Name'] = RolloutMetricData['Metric'] + '[' + RolloutMetricData['Units'] + ']'
RolloutMetricData = RolloutMetricData.drop('Unnamed: 0', axis=1)


RolloutMetricData=RolloutMetricData.pivot(index=['Year', 'File'], columns='Column Name', values = 'Value')

# Years = []
# DemandFiles = []
# for index in RolloutMetricData.index:
# Years.append(index[0])
# DemandFiles.append(index[1].replace('DemandFile ', ''))

# RolloutMetricData['Year'] = Years

RolloutMetricData.reset_index(inplace=True)
RolloutMetricData['File'] = RolloutMetricData['File'].str.replace('DemandFile ', '')
RolloutMetricData['Total Demand'] = RolloutMetricData['File'].map(lambda x: TotalDemand(DemandData, x))
RolloutMetricData=RolloutMetricData[RolloutMetricData.Year != 2051]
RolloutMetricData=RolloutMetricData[RolloutMetricData.Year != 'All']
RolloutMetricData['Legend Label'] = RolloutMetricData['File'].map(TrainCountDict)

#%%
# DFiles = RolloutMetricData['File'].unique()

# for DFile in DFiles:
# DemandInterest = RolloutMetricData[RolloutMetricData['File'] == DFile]

# SwRIPlot.MakeStackLineSub('Year',
# [['GHG_Diesel[tonne_co2eq]','GHG_Electricity[tonne_co2eq]']],
# 'GHG Emissions' + DFile,
# 'GHG [Tons]',
# 'Year',
# DemandInterest,
# auto_open=True)


# SwRIPlot.MakeStackLineSub('Year',
# [['Count_BEL[Count]','Count_Non_BEL[Count]']],
# 'Loco Fraction' + DFile,
# ['Count'],
# 'Year',
# DemandInterest,
# auto_open=True)

# SwRIPlot.MakeLine('Year',
# ['BEL_Pct_Locomotives[Percent]'],
# 'BEL Fraction' + DFile,
# 'BEL Fraction',
# 'Year',
# DemandInterest,
# auto_open=True)

# SwRIPlot.MakeStackLineSub('Year',
# [['Cost_Diesel[USD]', 'Cost_Electricity[USD]']],
# 'Energy Cost' + DFile,
# ['Cost [$]'],
# 'Year',
# DemandInterest,
# auto_open=True)

# SwRIPlot.MakeLine('Year',
# ['LCOTKM[usd_per_million_tonne_km]'],
# 'Levelized Cost' + DFile,
# 'Cost [$]',
# 'Year',
# DemandInterest,
# auto_open=True)

# # fig = px.scatter_3d(RolloutMetricData, x='Year', y='Total Demand', z='Cost_Diesel[USD]')
# # fig.write_html('test.html', auto_open=True)
RolloutFolder = RolloutFolder + '/'

SwRIPlot.MakeStackLineSubFancy('Year',
[['GHG_Diesel[tonne_co2eq]','GHG_Electricity[tonne_co2eq]']],
RolloutFolder + 'GHG Emissions',
['GHG Emissions [Tons]'],
'Year',
RolloutMetricData,
auto_open=True,
Color=['Legend Label'])


SwRIPlot.MakeStackLineSubFancy('Year',
[['Count_BEL[Count]','Count_Non_BEL[Count]']],
RolloutFolder + 'Loco Fraction',
['Count'],
'Year',
RolloutMetricData,
auto_open=True,
Color=['Legend Label'])

SwRIPlot.MakeStackLineSubFancy('Year',
[['BEL_Pct_Locomotives[Percent]']],
RolloutFolder + 'BEL Fraction',
'BEL Fraction',
'Year',
RolloutMetricData,
auto_open=True,
Color=['Legend Label'])

SwRIPlot.MakeStackLineSubFancy('Year',
[['Cost_Diesel[USD]', 'Cost_Electricity[USD]']],
RolloutFolder + 'Energy Cost',
['Cost [$]'],
'Year',
RolloutMetricData,
auto_open=True,
Color=['Legend Label'])

SwRIPlot.MakeStackLineSubFancy('Year',
[['LCOTKM[usd_per_million_tonne_km]']],
RolloutFolder + 'Levelized Cost',
['Levelized Cost [$/million-tonne-km]'],
'Year',
RolloutMetricData,
auto_open=True,
Color=['Legend Label'])

SwRIPlot.MakeStackLineSubFancy('Year',
[['Cost_Total[USD]', 'Cost_BEL_New[USD]', 'Cost_Non_Bel_New[USD]']],
RolloutFolder + 'Total Costs',
['Cost [$]'],
'Year',
RolloutMetricData,
auto_open=True,
Color=['Legend Label'])

print(RolloutFolder + 'Levelized Cost')
print(RolloutMetricData.columns.values)
Loading

0 comments on commit 360dfae

Please sign in to comment.