Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chunk size 1 and stats std results #363

Merged
merged 6 commits into from
Feb 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 15 additions & 3 deletions nannyml/sampling_error/summary_stats.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,9 @@
import numpy as np
import pandas as pd
from scipy.stats import gaussian_kde, moment
from logging import getLogger

logger = getLogger(__name__)

def summary_stats_std_sampling_error_components(col: pd.Series) -> Tuple:
"""
Expand Down Expand Up @@ -38,8 +40,10 @@ def summary_stats_std_sampling_error(sampling_error_components, col) -> float:

Parameters
----------
sampling_error_components : a set of parameters that were derived from reference data.
col : the (analysis) column you want to calculate sampling error for.
sampling_error_components:
a set of parameters that were derived from reference data.
col:
the (analysis) column you want to calculate sampling error for.

Returns
-------
Expand All @@ -49,7 +53,15 @@ def summary_stats_std_sampling_error(sampling_error_components, col) -> float:
_std = sampling_error_components[0]
_mu4 = sampling_error_components[1]
_size = col.shape[0]
err_var = np.sqrt((1 / _size) * (_mu4 - ((_size - 3) * (_std**4) / (_size - 1))))

err_var_parenthesis_part = (_mu4 - ((_size - 3) * (_std**4) / (_size - 1)))
if not (
np.isfinite(err_var_parenthesis_part) and
err_var_parenthesis_part >= 0
):
logger.debug("Summary Stats sampling error calculation imputed to nan because of non finite positive parenthesis factor.")
return np.nan
err_var = np.sqrt((1 / _size) * err_var_parenthesis_part)
return (1 / (2 * _std)) * err_var


Expand Down
4 changes: 4 additions & 0 deletions nannyml/stats/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,13 @@

"""Module containing base classes for data quality calculations."""

from numpy import isnan


def _add_alert_flag(row_result: dict) -> bool:
flag = False
if isnan(row_result['value']):
flag = True
if row_result['upper_threshold'] is not None:
if row_result['value'] > row_result['upper_threshold']:
flag = True
Expand Down
37 changes: 37 additions & 0 deletions tests/stats/test_std.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,13 @@
"""Tests for Drift package."""

import pytest
import pandas as pd
import numpy as np


from nannyml.datasets import load_synthetic_car_loan_dataset
from nannyml.stats import SummaryStatsStdCalculator
from nannyml.chunk import SizeBasedChunker

# @pytest.fixture(scope="module")
# def status_sum_result() -> Result:
Expand All @@ -33,3 +37,36 @@ def test_stats_std_calculator_with_default_params_should_not_fail(): # noqa: D1
_ = calc.calculate(data=analysis)
except Exception:
pytest.fail()


def test_stats_std_calculator_with_default_params_chunk_size_one(): # noqa: D103
reference, analysis, _ = load_synthetic_car_loan_dataset()

chunker = SizeBasedChunker(chunk_size=5_000, incomplete='keep')
calc = SummaryStatsStdCalculator(
column_names=['car_value'],
chunker=chunker
).fit(reference)
result = calc.calculate(data=analysis.head(5_001))
expected = pd.DataFrame(
{
('chunk', 'key'): ['[0:4999]', '[5000:5000]'],
('chunk', 'chunk_index'): [0,1],
('chunk', 'start_index'): [0,5000],
('chunk', 'end_index'): [4999,5000],
('chunk', 'start_date'): [None,None],
('chunk', 'end_date'): [None,None],
('chunk', 'period'): ['analysis','analysis'],
('car_value', 'value'): [20614.8926,np.nan],
('car_value', 'sampling_error'): [271.9917,np.nan],
('car_value', 'upper_confidence_boundary'): [21430.8679,np.nan],
('car_value', 'lower_confidence_boundary'): [19798.9174,np.nan],
('car_value', 'upper_threshold'): [20978.5658, 20978.5658],
('car_value', 'lower_threshold'): [19816.9091, 19816.9091],
('car_value', 'alert'): [False, True],
}
)
pd.testing.assert_frame_equal(
expected,
result.filter(period='analysis').to_df().round(4)
)
Loading