-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #335 from Neuroblox/add-simpler-RF-learning-example
add a simple RF example
- Loading branch information
Showing
1 changed file
with
77 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
using CSV | ||
using DataFrames | ||
using Neuroblox | ||
using DifferentialEquations | ||
using MetaGraphs | ||
|
||
|
||
time_block_dur = 90 # ms (size of discrete time blocks) | ||
N_trials = 10 #number of trials | ||
|
||
global_ns = :g | ||
|
||
fn = joinpath(@__DIR__, "image_example.csv") #stimulus image file | ||
data = CSV.read(fn, DataFrame) | ||
|
||
#define the circuit blox | ||
@named stim = ImageStimulus(data[1:N_trials,:]; namespace=global_ns, t_stimulus=600, t_pause=1000) | ||
|
||
@named LC = NextGenerationEIBlox(;namespace=global_ns, Cₑ=2*26,Cᵢ=1*26, Δₑ=0.5, Δᵢ=0.5, η_0ₑ=10.0, η_0ᵢ=0.0, v_synₑₑ=10.0, v_synₑᵢ=-10.0, v_synᵢₑ=10.0, v_synᵢᵢ=-10.0, alpha_invₑₑ=10.0/26, alpha_invₑᵢ=0.8/26, alpha_invᵢₑ=10.0/26, alpha_invᵢᵢ=0.8/26, kₑₑ=0.0*26, kₑᵢ=0.6*26, kᵢₑ=0.6*26, kᵢᵢ=0*26) | ||
|
||
@named VC = CorticalBlox(N_wta=45, N_exci=5, density=0.01, weight=1,I_bg_ar=0;namespace=global_ns) | ||
|
||
@named PFC = CorticalBlox(N_wta=20, N_exci=5, density=0.01, weight=1,I_bg_ar=0;namespace=global_ns) | ||
|
||
@named STR1 = Striatum(N_inhib=1;namespace=global_ns) | ||
@named STR2 = Striatum(N_inhib=1;namespace=global_ns) | ||
|
||
@named tan_pop1 = TAN(;namespace=global_ns) | ||
@named tan_pop2 = TAN(;namespace=global_ns) | ||
|
||
@named AS = GreedyPolicy(namespace=global_ns, t_decision=180.5) | ||
@named SNcb = SNc(namespace=global_ns) | ||
|
||
|
||
assembly = [LC, VC, PFC, STR1, STR2, stim, tan_pop1, tan_pop2, AS, SNcb] | ||
d = Dict(b => i for (i,b) in enumerate(assembly)) | ||
|
||
#define learning rules | ||
hebbian_mod = HebbianModulationPlasticity(K=0.04, decay=0.01, α=2.5, θₘ=1, modulator=SNcb, t_pre=1600-eps(), t_post=1600-eps(), t_mod=90) | ||
|
||
hebbian_cort = HebbianPlasticity(K=5e-4, W_lim=5, t_pre=1600-eps(), t_post=1600-eps()) | ||
|
||
hebbian_thal_cort = HebbianPlasticity(K=1.7e-5, W_lim=6, t_pre=1600-eps(), t_post=1600-eps()) | ||
|
||
g = MetaDiGraph() | ||
add_blox!.(Ref(g), assembly) | ||
|
||
#connect the bloxs | ||
|
||
add_edge!(g, d[LC], d[VC], Dict(:weight => 44)) #LC->VC | ||
add_edge!(g, d[LC], d[PFC], Dict(:weight => 44)) #LC->pfc | ||
|
||
add_edge!(g, d[VC], d[PFC], Dict(:weight => 1, :density => 0.08, :learning_rule => hebbian_cort)) #VC->pfc | ||
add_edge!(g, d[PFC], d[STR1], Dict(:weight => 0.075, :density => 0.04, :learning_rule => hebbian_mod)) #pfc->str1 | ||
add_edge!(g, d[PFC], d[STR2], Dict(:weight => 0.075, :density => 0.04, :learning_rule => hebbian_mod)) #pfc->str2 | ||
|
||
add_edge!(g, d[stim], d[VC], :weight, 14) #stim->VC | ||
add_edge!(g, d[tan_pop1], d[STR1], Dict(:weight => 1, :t_event => 90.0)) #TAN pop1 -> str1 | ||
add_edge!(g, d[tan_pop2], d[STR2], Dict(:weight => 1, :t_event => 90.0)) #TAN pop2 -> str2 | ||
add_edge!(g, d[STR1], d[tan_pop1], Dict(:weight => 1)) #str1 -> TAN pop1 | ||
add_edge!(g, d[STR2], d[tan_pop1], Dict(:weight => 1)) #str2 -> TAN pop1 | ||
add_edge!(g, d[STR1], d[tan_pop2], Dict(:weight => 1)) #str1 -> TAN pop2 | ||
add_edge!(g, d[STR2], d[tan_pop2], Dict(:weight => 1)) #str2 -> TAN pop2 | ||
add_edge!(g, d[STR1], d[STR2], Dict(:weight => 1, :t_event => 181.0)) #str1 -> str2 | ||
add_edge!(g, d[STR2], d[STR1], Dict(:weight => 1, :t_event => 181.0)) #str2 -> str1 | ||
add_edge!(g, d[STR1], d[AS])# str1->AS | ||
add_edge!(g, d[STR2], d[AS])# str2->AS | ||
add_edge!(g, d[STR1], d[SNcb], Dict(:weight => 1)) # str1->Snc | ||
add_edge!(g, d[STR2], d[SNcb], Dict(:weight => 1)) # str2->Snc | ||
|
||
#define the circuit as an Agent | ||
agent = Agent(g; name=:ag, t_block = 90); | ||
|
||
#define environment : contains stimuli and feedback | ||
env = ClassificationEnvironment(stim; name=:env, namespace=global_ns) | ||
|
||
run_experiment!(agent, env; alg=Vern7(), reltol=1e-9,abstol=1e-9) |