Skip to content

OnYuKang/GAN_DCGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Generative Adversarial Networks (GANs)

Vanilla GAN and DCGAN

Requirements

  • Python 3.x
  • Tensorflow > 0.12
  • Numpy
  • SciPy
  • OpenCV
  • lmdb (for processing LSUN dataset only)

Pre-execution instructions

Datasets to download

Download following files in the program root dirctory (*.../gan)

Results

Vanilla GAN

  • Dataset class: LSUN/church outdoor

Generated sample:

Each epoch:

Loss graph:

DCGAN

  • Dataset class: LSUN/church outdoor

Generated sample:

Each epoch:

Loss graph:

Reference papers

  • I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Nets. NIPS 2014
  • I. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. NIPS 2016
  • A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. ICLR 2016

About

Vanilla GAN and DCGAN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages