Skip to content

Commit

Permalink
Merge pull request #134 from Ouranosinc/add_partition_plot
Browse files Browse the repository at this point in the history
add partition plot
  • Loading branch information
juliettelavoie authored Jan 4, 2024
2 parents f9301a5 + f25dd46 commit f047bc3
Show file tree
Hide file tree
Showing 4 changed files with 272 additions and 1 deletion.
1 change: 1 addition & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ New features and enhancements
* Use small geojson in the notebook. (:pull:`124`).
* Add the Colours of Figanos page (:issue:`126`, :pull:`127`).
* Figanos now adheres to PEPs 517/518/621 using the `flit` backend for building and packaging. (:pull:`135`).
* New function ``fg.partition`` (:pull:`134`).

Bug fixes
^^^^^^^^^
Expand Down
137 changes: 136 additions & 1 deletion docs/notebooks/figanos_docs.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -1016,6 +1016,141 @@
"\n",
"fg.taylordiagram(sims, std_range=(0, 1.3), contours=5, contours_kw={'colors': 'green'}, plot_kw={'reference': {'marker':'*'}})\n"
]
},
{
"cell_type": "markdown",
"id": "a0a3afb0",
"metadata": {},
"source": [
"## Partition plots\n",
"\n",
"Partition plots show the fraction of uncertainty associated with different components.\n",
"Xclim has a few different [partition functions](https://xclim.readthedocs.io/en/stable/api.html#uncertainty-partitioning). \n",
"\n",
"This tutorial is a reproduction of [xclim's documentation](https://xclim.readthedocs.io/en/stable/notebooks/partitioning.html).\n",
"\n",
"<div class=\"alert alert-info\">\n",
" \n",
"Note that you could also use the [xscen library](https://xscen.readthedocs.io/en/latest/index.html) to build and ensemble from a catalog with `xscen.ensembles.build_partition_data`.\n",
" \n",
"</div>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a91d12a2",
"metadata": {},
"outputs": [],
"source": [
"# Fetch data\n",
"from __future__ import annotations\n",
"\n",
"import pandas as pd\n",
"\n",
"import xclim.ensembles\n",
"\n",
"# The directory in the Atlas repo where the data is stored\n",
"# host = \"https://github.com/IPCC-WG1/Atlas/raw/main/datasets-aggregated-regionally/data/CMIP6/CMIP6_tas_land/\"\n",
"host = \"https://raw.githubusercontent.com/IPCC-WG1/Atlas/main/datasets-aggregated-regionally/data/CMIP6/CMIP6_tas_land/\"\n",
"\n",
"# The file pattern, e.g. CMIP6_ACCESS-CM2_ssp245_r1i1p1f1.csv\n",
"pat = \"CMIP6_{model}_{scenario}_{member}.csv\"\n",
"\n",
"# Here we'll download data only for a very small demo sample of models and scenarios.\n",
"\n",
"# Download data for a few models and scenarios.\n",
"models = [\"ACCESS-CM2\", \"CMCC-CM2-SR5\", \"CanESM5\"]\n",
"members = [\"r1i1p1f1\", \"r1i1p1f1\", \"r1i1p1f1\"]\n",
"scenarios = [\"ssp245\", \"ssp370\", \"ssp585\"]\n",
"\n",
"# Create the input ensemble.\n",
"data = []\n",
"for model, member in zip(models, members):\n",
" for scenario in scenarios:\n",
" url = host + pat.format(model=model, scenario=scenario, member=member)\n",
"\n",
" # Fetch data using pandas\n",
" df = pd.read_csv(url, index_col=0, comment=\"#\", parse_dates=True)[\"world\"]\n",
" # Convert to a DataArray, complete with coordinates.\n",
" da = (\n",
" xr.DataArray(df)\n",
" .expand_dims(model=[model], scenario=[scenario])\n",
" .rename(date=\"time\")\n",
" )\n",
" data.append(da)\n",
" \n",
"# Combine DataArrays from the different models and scenarios into one.\n",
"ens_mon = xr.combine_by_coords(data)[\"world\"]\n",
"\n",
"# Then resample the monthly time series at the annual frequency\n",
"ens = ens_mon.resample(time=\"Y\").mean()"
]
},
{
"cell_type": "markdown",
"id": "d91c12cf",
"metadata": {},
"source": [
"Compute uncertainties with xclim and use `fractional_uncertainty` to have the right format to plot."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "645c3bb3",
"metadata": {},
"outputs": [],
"source": [
"# compute uncertainty\n",
"mean, uncertainties = xclim.ensembles.hawkins_sutton(ens, baseline=(\"2016\", \"2030\"))\n",
"#frac= xc.ensembles.fractional_uncertainty(uncertainties)\n",
"\n",
"#FIXME: xc.ensembles.fractional_uncertainty has not been released yet. Until until it is released, here it is.\n",
"def fractional_uncertainty(u: xr.DataArray):\n",
" \"\"\"\n",
" Return the fractional uncertainty.\n",
"\n",
" Parameters\n",
" ----------\n",
" u: xr.DataArray\n",
" Array with uncertainty components along the `uncertainty` dimension.\n",
"\n",
" Returns\n",
" -------\n",
" xr.DataArray\n",
" Fractional, or relative uncertainty with respect to the total uncertainty.\n",
" \"\"\"\n",
" uncertainty = u / u.sel(uncertainty=\"total\") * 100\n",
" uncertainty.attrs.update(u.attrs)\n",
" uncertainty.attrs[\"long_name\"] = \"Fraction of total variance\"\n",
" uncertainty.attrs[\"units\"] = \"%\"\n",
" return uncertainty\n",
"\n",
"frac= fractional_uncertainty(uncertainties)\n",
"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "32db8ef5",
"metadata": {},
"outputs": [],
"source": [
"# plot\n",
"fg.partition(\n",
" frac,\n",
" start_year='2016', # change the x-axis\n",
" show_num=True, # put the number of element of each uncertainty source in the legend FIXME: will only appear after xclim releases 0.48\n",
" fill_kw={\n",
" \"variability\": {'color':\"#DC551A\"},\n",
" \"model\": {'color':\"#2B2B8B\"},\n",
" \"scenario\": {'color':\"#275620\"},},\n",
" line_kw={'lw':2}\n",
")"
]
}
],
"metadata": {
Expand All @@ -1030,7 +1165,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
"version": "3.9.16"
}
},
"nbformat": 4,
Expand Down
1 change: 1 addition & 0 deletions figanos/matplotlib/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
gridmap,
hatchmap,
heatmap,
partition,
scattermap,
stripes,
taylordiagram,
Expand Down
134 changes: 134 additions & 0 deletions figanos/matplotlib/plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -2037,3 +2037,137 @@ def hatchmap(
set_plot_attrs(use_attrs, dattrs, ax, wrap_kw={"max_line_len": 60})

return ax


def _add_lead_time_coord(da, ref):
"""Add a lead time coordinate to the data. Modifies da in-place."""
lead_time = da.time.dt.year - int(ref)
da["Lead time"] = lead_time
da["Lead time"].attrs["units"] = f"years from {ref}"
return lead_time


def partition(
data: xr.DataArray | xr.Dataset,
ax: matplotlib.axes.Axes | None = None,
start_year: str | None = None,
show_num: bool = True,
fill_kw: dict[str, Any] | None = None,
line_kw: dict[str, Any] | None = None,
fig_kw: dict[str, Any] | None = None,
legend_kw: dict[str, Any] | None = None,
) -> matplotlib.axes.Axes:
"""Figure of the partition of total uncertainty by components.
Uncertainty fractions can be computed with xclim
(https://xclim.readthedocs.io/en/stable/api.html#uncertainty-partitioning).
Make sure the use `fraction=True` in the xclim function call.
Parameters
----------
data: xr.DataArray or xr.Dataset
Variance over time of the different components of uncertainty.
Output of a `xclim.ensembles._partitioning` function.
ax : matplotlib axis, optional
Matplotlib axis on which to plot
start_year: str
If None, the x-axis will be the time in year.
If str, the x-axis will show the number of year since start_year.
show_num: bool
If True, show the number of elements for each uncertainty components in parenthesis in the legend.
`data` should have attributes named after the components with a list its the elements.
fill_kw: dict
Keyword arguments passed to `ax.fill_between`.
It is possible to pass a dictionary of keywords for each component (uncertainty coordinates).
line_kw: dict
Keyword arguments passed to `ax.plot` for the lines in between the components.
The default is {color="k", lw=2}. We recommend always using lw>=2.
fig_kw: dict
Keyword arguments passed to `plt.subplots`.
legend_kw: dict
Keyword arguments passed to `ax.legend`.
Returns
-------
mpl.axes.Axes
"""
if isinstance(data, xr.Dataset):
if len(data.data_vars) > 1:
warnings.warn(
"data is xr.Dataset; only the first variable will be used in plot"
)
data = data[list(data.keys())[0]].squeeze()

if data.attrs["units"] != "%":
raise ValueError(
"The units are not %. Use `fraction=True` in the xclim function call."
)

fill_kw = empty_dict(fill_kw)
line_kw = empty_dict(line_kw)
fig_kw = empty_dict(fig_kw)
legend_kw = empty_dict(legend_kw)

# select data to plot
if isinstance(data, xr.DataArray):
data = data.squeeze()
elif isinstance(data, xr.Dataset): # in case, it was saved to disk before plotting.
if len(data.data_vars) > 1:
warnings.warn(
"data is xr.Dataset; only the first variable will be used in plot"
)
data = data[list(data.keys())[0]].squeeze()
else:
raise TypeError("`data` must contain a xr.DataArray or xr.Dataset")

if ax is None:
fig, ax = plt.subplots(**fig_kw)

# Select data from reference year onward
if start_year:
data = data.sel(time=slice(start_year, None))

# Lead time coordinate
time = _add_lead_time_coord(data, start_year)
ax.set_xlabel(f"Lead time (years from {start_year})")
else:
time = data.time.dt.year

# fill_kw that are direct (not with uncertainty as key)
fk_direct = {k: v for k, v in fill_kw.items() if (k not in data.uncertainty.values)}

# Draw areas
past_y = 0
black_lines = []
for u in data.uncertainty.values:
if u not in ["total", "variability"]:
present_y = past_y + data.sel(uncertainty=u)
num = len(data.attrs.get(u, [])) # compatible with pre PR PR #1529
label = f"{u} ({num})" if show_num and num else u
ax.fill_between(
time, past_y, present_y, label=label, **fill_kw.get(u, fk_direct)
)
black_lines.append(present_y)
past_y = present_y
ax.fill_between(
time, past_y, 100, label="variability", **fill_kw.get("variability", fk_direct)
)

# Draw black lines
line_kw.setdefault("color", "k")
line_kw.setdefault("lw", 2)
ax.plot(time, np.array(black_lines).T, **line_kw)

ax.xaxis.set_major_locator(matplotlib.ticker.MultipleLocator(20))
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator(n=5))

ax.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(10))
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator(n=2))

ax.set_ylabel(f"{data.attrs['long_name']} ({data.attrs['units']})") #

ax.set_ylim(0, 100)
ax.legend(**legend_kw)

return ax

0 comments on commit f047bc3

Please sign in to comment.