This repository contains the code for our submission to SemEval-2020 task 4: Commonsense Validation and Explanation Task (ComVe). The task is explained in the picture below. Please look at the paper here for more details
The data provided by the task organizers is available under the following repository.
Subtask A and B will are evaluated using accuracy. Subtask C is evaluated using BLEU score.
export COMVE_DIR=/path/to/COMVE_data_dir
export OUTPUT_DIR=/path/to/output_dir
conda create -n comve_env python=3.6
conda activate comve_env
pip3 install requirements.txt
python3 ./run_taskA.py \
--model_type bert \
--task_name swag \
--model_name_or_path bert-base-uncased \
--do_train \
--do_eval \
--do_test \
--data_dir $COMVE_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir $OUTPUT_DIR \
--per_gpu_eval_batch_size=8 \
--per_gpu_train_batch_size=8 \
--gradient_accumulation_steps 2 \
--overwrite_output > results.csv
export COMVE_DIR=/path/to/COMVE_data_dir
export OUTPUT_DIR=/path/to/output_dir
python3 ./run_taskB.py \
--model_type bert \
--task_name swag \
--model_name_or_path bert-base-uncased\
--do_train \
--do_eval \
--do_test \
--data_dir $COMVE_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir $OUTPUT_DIR \
--per_gpu_eval_batch_size=8 \
--per_gpu_train_batch_size=8 \
--gradient_accumulation_steps 2 \
--overwrite_output > results.csv
We use and modify the code provided by Hugging Face library for Multiple Choice Tasks that are publically available. We procide a link to the original code for a SWAG example by Hugging Face here and the paper here