Skip to content

PiHau/ISH_ressources_cours_ML

 
 

Repository files navigation

Ressources pour le cours de Machine Learning (UNIL, Lettres, MA-ISH)

Sources de données

Généralistes

Données socio-économiques :

Images

Données textuelles

Serveurs pour notebooks

Blogs, sites et cours

Livres

Théoriques

Bishop, C. M. (2016). Pattern Recognition and Machine Learning (Softcover reprint of the original 1st edition 2006 (corrected at 8th printing 2009)). Springer New York.

Bishop, C. M., & Bishop, H. (2023). Deep learning: Foundations and concepts. Springer Nature.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning : Data mining, inference, and prediction (2nd ed). Springer.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.

Izenman, A. J. (2008). Modern multivariate statistical techniques : Regression, classification, and manifold learning. Springer.

Pratiques

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow : Concepts, tools, and techniques to build intelligent systems (Second edition). O’Reilly Media, Inc.

Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with PyTorch. Manning Publications Co.

Howard, J., & Gugger, S. (2020). Deep learning for coders with fastai and PyTorch : AI applications without a PhD (First edition). O’Reilly.

Chollet, F. (2020). L’apprentissage profond avec Python. machinelearning.fr.

About

Ressources pour le cours de Machine Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%