Skip to content

QingkaiZeng/CodeTaxo-Pub

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CodeTaxo-Pub

Code and Data for CodeTaxo

Environment setup

export OPENAI_API_KEY=your_openai_api_key
export REPLICATE_API_TOKEN=your_relicate_api_token
pip install -r requirements.txt

Data

All datasets used in the CodeTaxo paper can be found in the ./data folder. Under ./data/<datasetName> (where <datasetName> is one of ['wordnet', 'graphine', 'semeval-sci', 'semeval-env', 'semeval-food']), you will typically find the following files:

  • test_taxonomy_expansion.json: The original taxonomy expansion dataset.
  • test_definition.json: A dictionary containing entity_name: definition pairs.
  • SimCSE_sampled_test_taxonomy_expansion_50p.json: The taxonomy expansion dataset after filtering out 50 percent of entities using the Semantic Similarity Filter.
  • SimCSE_sampled_test_taxonomy_expansion_topN.json: The taxonomy expansion dataset retaining the top-N entities using the Semantic Similarity Filter.

Model Outputs

The model outputs under different settings can be found in the ./outputs folder. Each subfolder corresponds to a specific experiment configuration.

Evaluation

To get the evaluation results based on the existing model outputs:

python src/eval.py --dataset $dataset --model $model --prompt_template_name $prompt_template_name --num_demos $num_demos --sampling --select_demo
  • --dataset: Dataset name, [wordnet, graphine, semeval-sci, semeval-env, semeval-food] (default: wordnet)
  • --model: Model name, e.g., [gpt-4o, gpt-4o-mini, gpt-3.5-turbo, meta-llama-3-70b-instruct, codellama-34b-instruct, codellama-70b-instruct] (default: gpt-4o)
  • --prompt_template_name: Use CodeTaxo prompt or Natural Language prompt, [codetaxo, NL] (default: codetaxo)
  • --num_demos: Number of demos (default: 1)
  • --no_definition: Exclude the entity definition in the prompt (default: False)
  • --sampling: Use SimCSE sampling (default: False)
  • --scale_factor: Scale factor for SimCSE sampling, keep the top scale_factor * 100 % entities, used when --percent is set (default: 0.5)
  • --percent: Keep scale_factor of the entities in the taxonomy (default: False)
  • --topk: Number of similar entities to sample, used when --percent is not set(default: 100)
  • --gen_explaination: Generate explanation for the taxonomy expansion (default: False)
  • --select_demo: Use demo selection (default: False)

Run

python src/main.py --dataset $dataset --model $model --prompt_template_name $prompt_template_name --num_demos $num_demos --sampling --select_demo
  • --dataset: Dataset name, [wordnet, graphine, semeval-sci, semeval-env, semeval-food] (default: wordnet)
  • --model: Model name, e.g., [gpt-4o, gpt-4o-mini, gpt-3.5-turbo, meta-llama-3-70b-instruct, codellama-34b-instruct, codellama-70b-instruct] (default: gpt-4o)
  • --prompt_template_name: Use CodeTaxo prompt or Natural Language prompt, [codetaxo, NL] (default: codetaxo)
  • --num_demos: Number of demos (default: 1)
  • --no_definition: Exclude the entity definition in the prompt (default: False)
  • --sampling: Use SimCSE sampling (default: False)
  • --scale_factor: Scale factor for SimCSE sampling, keep the top scale_factor * 100 % entities, used when --percent is set (default: 0.5)
  • --percent: Keep scale_factor of the entities in the taxonomy (default: False)
  • --topk: Number of similar entities to sample, used when --percent is not set(default: 100)
  • --gen_explaination: Generate explanation for the taxonomy expansion (default: False)
  • --select_demo: Use demo selection (default: False)

About

Code and Data for CodeTaxo

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages