-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
180 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
--- | ||
name: "MetabolomicsWorkbench" | ||
version: "2024-05-08" | ||
provenance_id: "infores:metabolomics_workbench" | ||
predicate_mapping: | ||
produces: "biolink:produces" | ||
causally_influences: "biolink:produces" | ||
correlated_with_condition: "biolink:correlated_with" | ||
edge_file: "MW.edges.csv" | ||
node_files: | ||
- node_file: | ||
name: "MW.Anatomy.nodes.csv" | ||
type: "Anatomy" | ||
primary_id_column: "UBERON" | ||
secondary_id_column: "CHV" | ||
- node_file: | ||
name: "MW.Disease or Phenotype.nodes.csv" | ||
type: "Disease or Phenotype" | ||
primary_id_column: "MONDO" | ||
secondary_id_column: "CHV" | ||
- node_file: | ||
name: "MW.Gene.nodes.csv" | ||
type: "Gene" | ||
primary_id_column: "HGNC" | ||
secondary_id_column: "OMIM" | ||
- node_file: | ||
name: "MW.Metabolite.nodes.csv" | ||
type: "Metabolite" | ||
primary_id_column: "PUBCHEM" | ||
secondary_id_column: "PUBMED" | ||
--- | ||
name: "LINCS" | ||
version: "2024-05-08" | ||
provenance_id: "infores:lincs" | ||
predicate_mapping: | ||
in_similarity_relationship_with: "biolink:chemically_similar_to" | ||
negatively_regulates: "RO:0002212" | ||
positively_regulates: "RO:0002213" | ||
edge_file: "LINCS.edges.csv" | ||
node_files: | ||
- node_file: | ||
name: "LINCS.Gene.nodes.csv" | ||
type: "Gene" | ||
primary_id_column: "HGNC" | ||
secondary_id_column: "OMIM" | ||
- node_file: | ||
name: "LINCS.Compound.nodes.csv" | ||
type: "Compound" | ||
primary_id_column: "PUBCHEM" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
graphs: | ||
|
||
- graph_id: CFDE_Automat | ||
graph_name: CFDE KP | ||
graph_description: 'Common Fund Data Ecosystem KG' | ||
graph_url: https://github.com/NCATSTranslator/Translator-All/wiki/CFDE-KP | ||
output_format: none | ||
sources: | ||
- source_id: LINCS | ||
- source_id: MetabolomicsWorkbench | ||
|
120 changes: 120 additions & 0 deletions
120
parsers/MetabolomicsWorkbench/src/loadMetabolomicsWorkbench.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import os | ||
import zipfile | ||
|
||
import polars as pl | ||
import yaml | ||
from yaml import SafeLoader | ||
|
||
from Common.kgxmodel import kgxnode, kgxedge | ||
from Common.loader_interface import SourceDataLoader | ||
from Common.biolink_constants import * | ||
from Common.prefixes import PUBCHEM_COMPOUND | ||
from Common.utils import GetData | ||
|
||
|
||
class MetabolomicsWorkbenchLoader(SourceDataLoader): | ||
|
||
source_id: str = 'MetabolomicsWorkbench' | ||
|
||
def __init__(self, test_mode: bool = False, source_data_dir: str = None): | ||
""" | ||
:param test_mode - sets the run into test mode | ||
:param source_data_dir - the specific storage directory to save files in | ||
""" | ||
super().__init__(test_mode=test_mode, source_data_dir=source_data_dir) | ||
self.data_url = 'https://cfde-drc.s3.amazonaws.com/Metabolomics/KG%20Assertions' | ||
self.data_file = "MW.zip" | ||
|
||
with open('/ORION/cfde-config.yml', 'r') as file: | ||
yaml_data = list(yaml.load_all(file, Loader=SafeLoader)) | ||
self.config = list(filter(lambda x: x["name"] == self.source_id, yaml_data))[0] | ||
|
||
def get_latest_source_version(self) -> str: | ||
return self.config['version'] | ||
|
||
def get_data(self) -> bool: | ||
data_puller = GetData() | ||
source_data_url = f'{self.data_url}/{self.get_latest_source_version()}/{self.data_file}' | ||
data_puller.pull_via_http(source_data_url, self.data_path) | ||
return True | ||
|
||
def parse_data(self) -> dict: | ||
""" | ||
Parses the data file for graph nodes/edges | ||
:return: ret_val: load_metadata | ||
""" | ||
zip_file = os.path.join(self.data_path, self.data_file) | ||
|
||
with zipfile.ZipFile(zip_file, 'r') as zip_ref: | ||
zip_ref.extractall(self.data_path) | ||
|
||
nodes = pl.DataFrame(schema={"id": pl.String, "original_id": pl.String, "name": pl.String, "category": pl.List(pl.String)}) | ||
|
||
predicate_mapping = dict(self.config['predicate_mapping']) | ||
|
||
for file in self.config["node_files"]: | ||
if file["node_file"]["secondary_id_column"]: | ||
tmp_df = pl.scan_csv(os.path.join(self.data_path, file["node_file"]["name"]), has_header=True).select( | ||
pl.when(pl.col(file["node_file"]["primary_id_column"]).is_null()).then(pl.col(file["node_file"]["secondary_id_column"])).otherwise(pl.col(file["node_file"]["primary_id_column"])).alias("id"), | ||
pl.col("").alias("original_id"), | ||
pl.col("label").alias("name"), | ||
pl.when(pl.col("type").is_null()).then(pl.lit(file["node_file"]["type"])).otherwise(pl.col("type")).cast(pl.List(pl.String)).alias("category") | ||
) | ||
else: | ||
tmp_df = pl.scan_csv(os.path.join(self.data_path, file["node_file"]["name"]), has_header=True).select( | ||
pl.col(file["node_file"]["primary_id_column"]).alias("id"), | ||
pl.col("").alias("original_id"), | ||
pl.col("label").alias("name"), | ||
pl.when(pl.col("type").is_null()).then(pl.lit(file["node_file"]["type"])).otherwise(pl.col("type")).cast(pl.List(pl.String)).alias("category") | ||
) | ||
tmp_df = tmp_df.with_columns( | ||
pl.when(pl.col("id").str.starts_with("PUBCHEM")).then(pl.col("id").str.replace("PUBCHEM", PUBCHEM_COMPOUND)).otherwise(pl.col("id")).alias("id"), | ||
pl.col("original_id"), | ||
pl.col("name"), | ||
pl.col("category") | ||
).collect() | ||
nodes = pl.concat([nodes, tmp_df], how="vertical") | ||
|
||
node_mapping = dict(zip(nodes["original_id"], nodes["id"])) | ||
|
||
df_missing = nodes.filter(pl.any_horizontal(pl.all().is_null())) | ||
unmapped_path = os.path.join(self.data_path, "unmapped.jsonl") | ||
df_missing.write_ndjson(unmapped_path) | ||
|
||
missing_mapping = dict(zip(df_missing["original_id"], df_missing["id"])) | ||
|
||
nodes = nodes.drop_nulls() | ||
nodes.drop_in_place("original_id") | ||
|
||
for row in nodes.rows(named=True): | ||
node = kgxnode(identifier=row['id'], name=row['name'], categories=row['category']) | ||
self.final_node_list.append(node) | ||
|
||
# nodes_path = os.path.join(self.data_path, "source_nodes.jsonl") | ||
# nodes.write_ndjson(nodes_path) | ||
|
||
edges = pl.scan_csv(os.path.join(self.data_path, self.config['edge_file']), has_header=True).select( | ||
pl.col("source").alias("subject"), | ||
pl.col("relation").alias("predicate"), | ||
pl.col("target").alias("object"), | ||
pl.lit(self.config['provenance_id']).alias(PRIMARY_KNOWLEDGE_SOURCE), | ||
pl.lit("data_analysis_pipeline").alias(AGENT_TYPE), | ||
pl.lit("knowledge_assertion").alias(KNOWLEDGE_LEVEL), | ||
).collect() | ||
|
||
edges = edges.with_columns(pl.col("subject").replace(missing_mapping), pl.col("predicate"), pl.col("object").replace(missing_mapping)).drop_nulls() | ||
edges = edges.with_columns(pl.col("subject").replace(node_mapping), pl.col("predicate").replace(predicate_mapping), pl.col("object").replace(node_mapping)) | ||
|
||
for row in edges.rows(named=True): | ||
edge = kgxedge(subject_id=row['subject'], predicate=row['predicate'], object_id=row['object'], primary_knowledge_source=row[PRIMARY_KNOWLEDGE_SOURCE], edgeprops={ KNOWLEDGE_LEVEL: row[KNOWLEDGE_LEVEL], AGENT_TYPE: row[AGENT_TYPE]}) | ||
self.final_edge_list.append(edge) | ||
|
||
return { 'record_counter': len(edges), 'skipped_record_counter': len(df_missing), 'errors': []} | ||
|
||
|
||
if __name__ == '__main__': | ||
source_data_dir = str(os.path.join(os.environ.get("ORION_STORAGE"), "MetabolomicsWorkbench", "2024-05-08")) | ||
loader = MetabolomicsWorkbenchLoader(source_data_dir=source_data_dir) | ||
loader.get_data() | ||
print(loader.parse_data()) |