Skip to content

Servir-Mekong/ST-CORA

Repository files navigation

ST-CORA with KDE storm segmentation

Spatiotemporal Object-based Rainfall Analysis

  • 3D and 4D object-based storm analysis
  • 4D analysis using a Multivariate kernel density estimation (KDE)
  • multicore analysis

Dependencies

@author: M. Laverde-Barajas @email: m.laverde@un-ihe.org mlaverdeb@gmail.com

@company SERVIR- MEKONG program ; IHE Delft Institute for Water Education; Delft University of Technology

Paramaters

  • T = # wet values

  • T2 = # delineation

  • Minsize = # noise value

  • kernel = 1= kernel segmentation 4D 0= 3D

  • Psize = # Min Object size

  • pixel_value = # resolution

  • StartTime = datetime(YYY, M, D, h, 0, 0) # (GMT)

  • EndTime = datetime(YYY, M, D, h, 0, 0)

  • MATRIX = 3D rainfall matrix

  • boundary = [Xmin_lbm,Xmax_lbm,Ymin_lbm,Ymax_lbm]

REFERENCES

ST-CORA Laverde-Barajas, M., Corzo, G., Bhattacharya, B., Uijlenhoet, R., & Solomatine, D. P. (2019). Spatiotemporal analysis of extreme rainfall events using an object-based approach. In Spatiotemporal Analysis of Extreme Hydrological Events (pp. 95-112). Elsevier.

ST-CORA with Multivariate kernel density estimation (KDE) Laverde-Barajas, M., Corzo, G. A., Poortinga, A., Chishtie, F., Meechaiya, C., Jayasinghe, S., ... & Solomatine, D. P. (2020a). St-corabico: A spatiotemporal object-based bias correction method for storm prediction detected by satellite. Remote Sensing, 12(21), 3538.

About

Spatiotemporal Object-based Rainfall Analysis

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages