Spatiotemporal Object-based Rainfall Analysis
- 3D and 4D object-based storm analysis
- 4D analysis using a Multivariate kernel density estimation (KDE)
- multicore analysis
- numpy==1.16.2
- pandas==0.25.0
- scikit-image==0.14.2
- statsmodels==0.10.1
- pickleshare==0.7.5
- datetime == 4.0.1
- skimage == 0.17.2
- scipy
- cc3d (https://github.com/seung-lab/connected-components-3d)
- matplotlib
- joblib
- multiprocessing
@author: M. Laverde-Barajas @email: m.laverde@un-ihe.org mlaverdeb@gmail.com
@company SERVIR- MEKONG program ; IHE Delft Institute for Water Education; Delft University of Technology
-
T = # wet values
-
T2 = # delineation
-
Minsize = # noise value
-
kernel = 1= kernel segmentation 4D 0= 3D
-
Psize = # Min Object size
-
pixel_value = # resolution
-
StartTime = datetime(YYY, M, D, h, 0, 0) # (GMT)
-
EndTime = datetime(YYY, M, D, h, 0, 0)
-
MATRIX = 3D rainfall matrix
-
boundary = [Xmin_lbm,Xmax_lbm,Ymin_lbm,Ymax_lbm]
REFERENCES
ST-CORA Laverde-Barajas, M., Corzo, G., Bhattacharya, B., Uijlenhoet, R., & Solomatine, D. P. (2019). Spatiotemporal analysis of extreme rainfall events using an object-based approach. In Spatiotemporal Analysis of Extreme Hydrological Events (pp. 95-112). Elsevier.
ST-CORA with Multivariate kernel density estimation (KDE) Laverde-Barajas, M., Corzo, G. A., Poortinga, A., Chishtie, F., Meechaiya, C., Jayasinghe, S., ... & Solomatine, D. P. (2020a). St-corabico: A spatiotemporal object-based bias correction method for storm prediction detected by satellite. Remote Sensing, 12(21), 3538.