Skip to content

Direct Preference Optimization of ChatGPT2 using TRL Library

Notifications You must be signed in to change notification settings

SharathHebbar/dpo_chatgpt2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

ChatGPT2

This model is a finetuned version of Sharathhebbar24/chat_gpt2 using Intel/orca_dpo_pairs on DPO

Technical Details

  1. The model's repository is in HuggingFace Link: https://huggingface.co/Sharathhebbar24/chat_gpt2_dpo

  2. The model was trained on the following Specs

  • Kaggle Platform
  • T4
  • 29GB RAM
  1. It took around 21 mins to train the model for 3 epochs with a loss of 0.005.

  2. It was trained on FP16 bit architecture with a batch size of 2.

license datasets language
apache-2.0 Intel/orca_dpo_pairs en

Model description

GPT-2 is a transformers model pre-trained on a very large corpus of English data in a self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences.

More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifting one token (word or piece of word) to the right. The model uses a masking mechanism to make sure the predictions for the token i only use the inputs from 1 to i but not the future tokens.

This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was trained for, however, which is generating texts from a prompt.

To use this model

>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model_name = "Sharathhebbar24/chat_gpt2_dpo"
>>> model = AutoModelForCausalLM.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> def generate_text(prompt):
>>>  inputs = tokenizer.encode(prompt, return_tensors='pt')
>>>  outputs = model.generate(inputs, max_length=64, pad_token_id=tokenizer.eos_token_id)
>>>  generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
>>>  return generated[:generated.rfind(".")+1]
>>> prompt = """
>>> user: what are you?
>>> assistant: I am a Chatbot intended to give a python program
>>> user: hmm,  can you write a python program to print Hii Heloo
>>> assistant: Sure Here is a python code.\n print("Hii Heloo")
>>> user: Can you write a Linear search program in python
>>> """
>>> res = generate_text(prompt)
>>> res

About

Direct Preference Optimization of ChatGPT2 using TRL Library

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published