Skip to content

Commit

Permalink
feat: publish maxwell equations
Browse files Browse the repository at this point in the history
  • Loading branch information
SidonieBouthors committed Jan 14, 2025
1 parent 13e5f8a commit aecb941
Showing 1 changed file with 238 additions and 0 deletions.
238 changes: 238 additions & 0 deletions content/share/maxwell-equations.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
---
title: Maxwell's Equations
description: A quick cheatsheet on Maxwell's Equations. Written as part of my notes for the PHYS-114 Course @ EPFL
date: 2023-01-05
tags: [epfl, electromagnetism]
published: true
---

# Maxwell's Equations

<Callout type="note">
This document is a quick cheatsheet on Maxwell's Equations.
It is not meant to be a comprehensive guide, but rather a quick reference, based on my notes from the EPFL's [PHYS-114 Course](https://edu.epfl.ch/coursebook/fr/physique-generale-electromagnetisme-PHYS-114) on Electromagnetism.
</Callout>

## Deriving the Equations

### First Equation

Gauss's Law (Electric flux through a closed surface)

$$
\Phi_E = \frac{Q}{\varepsilon_0}
$$

$$
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{Q}{\varepsilon_0} = 4 \pi k_e Q
$$

$$
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = 4\pi k_e \iiint_{\Omega} \rho \; dV
$$

Using the Divergence Theorem :

$$
\iiint_{\Omega} \nabla \cdot \mathbf E \; dV = 4\pi k_e \iiint_{\Omega} \rho \; dV
$$
$$
\nabla \cdot \mathbf E = 4\pi k_e \rho
$$
$$
\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0}
$$

### Second Equation

Gauss's Law for Magnetism (Magnetic flux through a closed surface)
$$
\Phi_B = \iint_{\partial \Omega} \mathbf B \cdot d \mathbf s
$$
$$
\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0
$$
Using the Divergence Theorem :
$$
\iiint_{\Omega} \nabla \cdot \mathbf B \; dV = 0
$$
$$
\nabla \cdot \mathbf B = 0
$$

This is equivalent to saying :
- Magnetic monopoles / charges do not exist (base entity is the dipole)
- Magnetic field lines have neither a beginning nor an end

### Third Equation

Faraday's Law (electromotive force, emf)
$$
\mathcal{E} = - \partial_t \Phi_B
$$
$$
\mathcal{E} = \int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \Phi_B = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
$$
$$
\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
$$

Using Stokes Theorem :
$$
\iint_{\Sigma} \nabla \times \mathbf E \; d \mathbf s = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
$$
$$
\nabla \times \mathbf E = - \partial_t \mathbf B
$$

Faraday's Law :

The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.

### Fourth Equation

Ampere's Law
$$
\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 I_{\text{encl}} = \mu_0 \iint_{\Sigma} \mathbf j \cdot d \mathbf s
$$
Maxwell's equation has the following component added to it :
$$
\mu_0 \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s$$
$$\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right)
$$

Using Stoke's Theorem :
$$
\iint_{\Sigma} \nabla \times \mathbf B \; d \mathbf s = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right)
$$
$$
\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right)
$$

Ampère's Law :

The original law states that magnetic fields relate to electric current, Maxwell's addition states that they also relate to changing electric fields

Note :
$\mu_0 = 4 \pi k_M$

## Differential Forms

$\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0}$

$\nabla \cdot \mathbf B = 0$

$\nabla \times \mathbf E = - \partial_t \mathbf B$

$\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right)$

## Integral Forms

**First Equation**
$$
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{1}{\varepsilon_0} \iiint_{\Omega} \rho \; dV = \frac{Q}{\varepsilon_0}
$$
**Second Equation**
$$
\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0
$$
**Third Equation**
$$
\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s
$$
**Fourth Equation**
$$
\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right)
$$

## In Empty Space

$\nabla \cdot \mathbf E = 0$

$\nabla \cdot \mathbf B = 0$

$\nabla \times \mathbf E = - \partial_t \mathbf B$

$\nabla \times \mathbf B = \mu_0 \varepsilon_0 \; \partial_t \mathbf E$


## Notation

Here are some remarks on the notation used that may be useful :

$\partial_t \mathbf F$ is $\frac{d\mathbf F}{dt}$

$\nabla \cdot F$ is the divergence of $F$

$\nabla \times F$ is the curl (rotationel) of $F$

### Divergence Theorem
In 2 dimensions (useless here)
$$
\iint_{\Sigma} \nabla \cdot F \; ds = \int_{\partial \Sigma} \langle F, \nu \rangle \; dl
$$
In 3 dimensions
$$
\iiint_{\Omega} \nabla \cdot F \; dV = \iint_{\partial \Omega} \langle F, \nu \rangle \; ds
$$
$\nu$ is the outwards pointing unit normal at each point on the boundary

$\langle F, \nu \rangle \; ds = F \cdot (\nu \; ds) = F \cdot d\mathbf s$

If we use a surface $S$ such that the normal to the surface is either perpendicular or parallel to $F$ :
- The perpendicular parts have zero flux through the surface
- The parallel parts have a flux through the surface simply equal to their value ($\mathbf F \cdot d\mathbf s$ becomes $F \; ds$)

### Stoke's Theorem
$$
\iint_{\Sigma} \nabla \times F \; ds = \int_{\partial \Sigma} F \cdot dl
$$

### Constants and Variables

$\mathbf E$ : electric field

$\mathbf B$ : magnetic field

$\rho$ : electric charge density (total charge per unit volume)

$\mathbf j$ : current density (total current per unit area)


$Q$ : total electric charge

$$
Q = \iiint_{\Omega} \rho \; dV
$$

$I$ : net electric current

$\mathcal{E}$ : emf (electromotive force)

$I_{\text{encl}}$ : total current through the loop

$\varepsilon_0$ : permittivity of free space

$\mu_0$ : permeability of free space

$k_e$ : Coulomb constant

$$
k_e = \frac{1}{4 \pi \varepsilon_0}
$$
$k_M$ : Magic constant
$$
k_M = \frac{\mu_0}{4 \pi}
$$
$$
\frac{k_M}{k_e} = \frac{1}{c^2} = \mu_0 \varepsilon_0
$$

$\Omega$ : any volume with closed boundary surface $\partial \Omega$

$\Sigma$ : any surface with closed boundary curve $\partial \Sigma$

<Callout type="note">
All integrals $\int_{\partial \Sigma}$ and $\iint_{\partial \Omega}$ could have been written using the loop notation $\oint$, which indicates a **closed** boundary (curve or surface).
Indeed all boundaries of $\Omega$ and $\Sigma$ in this document are **closed** boundaries
</Callout>

0 comments on commit aecb941

Please sign in to comment.