-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
13e5f8a
commit aecb941
Showing
1 changed file
with
238 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
--- | ||
title: Maxwell's Equations | ||
description: A quick cheatsheet on Maxwell's Equations. Written as part of my notes for the PHYS-114 Course @ EPFL | ||
date: 2023-01-05 | ||
tags: [epfl, electromagnetism] | ||
published: true | ||
--- | ||
|
||
# Maxwell's Equations | ||
|
||
<Callout type="note"> | ||
This document is a quick cheatsheet on Maxwell's Equations. | ||
It is not meant to be a comprehensive guide, but rather a quick reference, based on my notes from the EPFL's [PHYS-114 Course](https://edu.epfl.ch/coursebook/fr/physique-generale-electromagnetisme-PHYS-114) on Electromagnetism. | ||
</Callout> | ||
|
||
## Deriving the Equations | ||
|
||
### First Equation | ||
|
||
Gauss's Law (Electric flux through a closed surface) | ||
|
||
$$ | ||
\Phi_E = \frac{Q}{\varepsilon_0} | ||
$$ | ||
|
||
$$ | ||
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{Q}{\varepsilon_0} = 4 \pi k_e Q | ||
$$ | ||
|
||
$$ | ||
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = 4\pi k_e \iiint_{\Omega} \rho \; dV | ||
$$ | ||
|
||
Using the Divergence Theorem : | ||
|
||
$$ | ||
\iiint_{\Omega} \nabla \cdot \mathbf E \; dV = 4\pi k_e \iiint_{\Omega} \rho \; dV | ||
$$ | ||
$$ | ||
\nabla \cdot \mathbf E = 4\pi k_e \rho | ||
$$ | ||
$$ | ||
\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0} | ||
$$ | ||
|
||
### Second Equation | ||
|
||
Gauss's Law for Magnetism (Magnetic flux through a closed surface) | ||
$$ | ||
\Phi_B = \iint_{\partial \Omega} \mathbf B \cdot d \mathbf s | ||
$$ | ||
$$ | ||
\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0 | ||
$$ | ||
Using the Divergence Theorem : | ||
$$ | ||
\iiint_{\Omega} \nabla \cdot \mathbf B \; dV = 0 | ||
$$ | ||
$$ | ||
\nabla \cdot \mathbf B = 0 | ||
$$ | ||
|
||
This is equivalent to saying : | ||
- Magnetic monopoles / charges do not exist (base entity is the dipole) | ||
- Magnetic field lines have neither a beginning nor an end | ||
|
||
### Third Equation | ||
|
||
Faraday's Law (electromotive force, emf) | ||
$$ | ||
\mathcal{E} = - \partial_t \Phi_B | ||
$$ | ||
$$ | ||
\mathcal{E} = \int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \Phi_B = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s | ||
$$ | ||
$$ | ||
\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s | ||
$$ | ||
|
||
Using Stokes Theorem : | ||
$$ | ||
\iint_{\Sigma} \nabla \times \mathbf E \; d \mathbf s = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s | ||
$$ | ||
$$ | ||
\nabla \times \mathbf E = - \partial_t \mathbf B | ||
$$ | ||
|
||
Faraday's Law : | ||
|
||
The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path. | ||
|
||
### Fourth Equation | ||
|
||
Ampere's Law | ||
$$ | ||
\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 I_{\text{encl}} = \mu_0 \iint_{\Sigma} \mathbf j \cdot d \mathbf s | ||
$$ | ||
Maxwell's equation has the following component added to it : | ||
$$ | ||
\mu_0 \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s$$ | ||
$$\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right) | ||
$$ | ||
|
||
Using Stoke's Theorem : | ||
$$ | ||
\iint_{\Sigma} \nabla \times \mathbf B \; d \mathbf s = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \;\partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right) | ||
$$ | ||
$$ | ||
\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right) | ||
$$ | ||
|
||
Ampère's Law : | ||
|
||
The original law states that magnetic fields relate to electric current, Maxwell's addition states that they also relate to changing electric fields | ||
|
||
Note : | ||
$\mu_0 = 4 \pi k_M$ | ||
|
||
## Differential Forms | ||
|
||
$\nabla \cdot \mathbf E = \frac{\rho}{\varepsilon_0}$ | ||
|
||
$\nabla \cdot \mathbf B = 0$ | ||
|
||
$\nabla \times \mathbf E = - \partial_t \mathbf B$ | ||
|
||
$\nabla \times \mathbf B = \mu_0 \left( \mathbf j + \varepsilon_0 \; \partial_t \mathbf E\right)$ | ||
|
||
## Integral Forms | ||
|
||
**First Equation** | ||
$$ | ||
\iint_{\partial \Omega} \mathbf E \cdot d \mathbf s = \frac{1}{\varepsilon_0} \iiint_{\Omega} \rho \; dV = \frac{Q}{\varepsilon_0} | ||
$$ | ||
**Second Equation** | ||
$$ | ||
\iint_{\partial \Omega} \mathbf B \cdot d \mathbf s = 0 | ||
$$ | ||
**Third Equation** | ||
$$ | ||
\int_{\partial\Sigma} \mathbf E \cdot d \mathbf l = - \partial_t \iint_{\Sigma} \mathbf B \cdot d \mathbf s | ||
$$ | ||
**Fourth Equation** | ||
$$ | ||
\int_{\partial \Sigma} \mathbf B \cdot d \mathbf l = \mu_0 \left( \iint_{\Sigma} \mathbf j \cdot d \mathbf s + \varepsilon_0 \; \partial_t \iint_{\Sigma} \mathbf E \cdot d \mathbf s \right) | ||
$$ | ||
|
||
## In Empty Space | ||
|
||
$\nabla \cdot \mathbf E = 0$ | ||
|
||
$\nabla \cdot \mathbf B = 0$ | ||
|
||
$\nabla \times \mathbf E = - \partial_t \mathbf B$ | ||
|
||
$\nabla \times \mathbf B = \mu_0 \varepsilon_0 \; \partial_t \mathbf E$ | ||
|
||
|
||
## Notation | ||
|
||
Here are some remarks on the notation used that may be useful : | ||
|
||
$\partial_t \mathbf F$ is $\frac{d\mathbf F}{dt}$ | ||
|
||
$\nabla \cdot F$ is the divergence of $F$ | ||
|
||
$\nabla \times F$ is the curl (rotationel) of $F$ | ||
|
||
### Divergence Theorem | ||
In 2 dimensions (useless here) | ||
$$ | ||
\iint_{\Sigma} \nabla \cdot F \; ds = \int_{\partial \Sigma} \langle F, \nu \rangle \; dl | ||
$$ | ||
In 3 dimensions | ||
$$ | ||
\iiint_{\Omega} \nabla \cdot F \; dV = \iint_{\partial \Omega} \langle F, \nu \rangle \; ds | ||
$$ | ||
$\nu$ is the outwards pointing unit normal at each point on the boundary | ||
|
||
$\langle F, \nu \rangle \; ds = F \cdot (\nu \; ds) = F \cdot d\mathbf s$ | ||
|
||
If we use a surface $S$ such that the normal to the surface is either perpendicular or parallel to $F$ : | ||
- The perpendicular parts have zero flux through the surface | ||
- The parallel parts have a flux through the surface simply equal to their value ($\mathbf F \cdot d\mathbf s$ becomes $F \; ds$) | ||
|
||
### Stoke's Theorem | ||
$$ | ||
\iint_{\Sigma} \nabla \times F \; ds = \int_{\partial \Sigma} F \cdot dl | ||
$$ | ||
|
||
### Constants and Variables | ||
|
||
$\mathbf E$ : electric field | ||
|
||
$\mathbf B$ : magnetic field | ||
|
||
$\rho$ : electric charge density (total charge per unit volume) | ||
|
||
$\mathbf j$ : current density (total current per unit area) | ||
|
||
|
||
$Q$ : total electric charge | ||
|
||
$$ | ||
Q = \iiint_{\Omega} \rho \; dV | ||
$$ | ||
|
||
$I$ : net electric current | ||
|
||
$\mathcal{E}$ : emf (electromotive force) | ||
|
||
$I_{\text{encl}}$ : total current through the loop | ||
|
||
$\varepsilon_0$ : permittivity of free space | ||
|
||
$\mu_0$ : permeability of free space | ||
|
||
$k_e$ : Coulomb constant | ||
|
||
$$ | ||
k_e = \frac{1}{4 \pi \varepsilon_0} | ||
$$ | ||
$k_M$ : Magic constant | ||
$$ | ||
k_M = \frac{\mu_0}{4 \pi} | ||
$$ | ||
$$ | ||
\frac{k_M}{k_e} = \frac{1}{c^2} = \mu_0 \varepsilon_0 | ||
$$ | ||
|
||
$\Omega$ : any volume with closed boundary surface $\partial \Omega$ | ||
|
||
$\Sigma$ : any surface with closed boundary curve $\partial \Sigma$ | ||
|
||
<Callout type="note"> | ||
All integrals $\int_{\partial \Sigma}$ and $\iint_{\partial \Omega}$ could have been written using the loop notation $\oint$, which indicates a **closed** boundary (curve or surface). | ||
Indeed all boundaries of $\Omega$ and $\Sigma$ in this document are **closed** boundaries | ||
</Callout> |