Skip to content

SigNoz/celery-opentelemetry-instrumentation

Repository files navigation

Celery OpenTelemetry Instrumentation Demo

This project demonstrates how to instrument a Celery application with OpenTelemetry for distributed tracing and monitoring. It includes multiple task generators, workers, and a monitoring setup.

Architecture

The project consists of the following components:

  • Celery Workers: Process tasks from 4 different queues
  • Task Generators: 4 separate services generating different mathematical operations
  • RabbitMQ: Message broker for Celery
  • OpenTelemetry Collector: Collects and exports telemetry data
  • Flower: Web-based tool for monitoring Celery tasks

Task Operations

  • Queue1: Addition operation
  • Queue2: Multiplication operation
  • Queue3: Subtraction operation
  • Queue4: Division operation

Prerequisites

  • Docker
  • Docker Compose
  • Python 3.9+ (for local development)

Environment Variables

Task Generators

  • CELERY_BROKER_URL: RabbitMQ connection URL (default: amqp://guest:guest@rabbitmq:5672//)
  • TASK_DELAY: Delay between task generation in seconds
    • Generator1: 10 seconds (default)
    • Generator2: 15 seconds (default)
    • Generator3: 20 seconds (default)
    • Generator4: 25 seconds (default)

OpenTelemetry Configuration

  • OTEL_EXPORTER_OTLP_PROTOCOL: Protocol for OpenTelemetry export
  • OTEL_EXPORTER_OTLP_LOGS_ENDPOINT: Endpoint for logs
  • OTEL_EXPORTER_OTLP_METRICS_ENDPOINT: Endpoint for metrics
  • OTEL_EXPORTER_OTLP_TRACES_ENDPOINT: Endpoint for traces

Setup and Running

  1. Clone the repository:
git clone https://github.com/SigNoz/celery-opentelemetry-instrumentation.git
cd celery-opentelemetry-instrumentation
  1. Build and start the services:
docker-compose up --build
  1. Access the monitoring interfaces:
  • Flower Dashboard: http://localhost:5555

Project Structure

.
├── celery_app/
│   ├── celery.py          # Celery application configuration
│   └── Dockerfile         # Celery worker Dockerfile
├── task_generators/
│   ├── generator1.py      # Addition task generator
│   ├── generator2.py      # Multiplication task generator
│   ├── generator3.py      # Subtraction task generator
│   ├── generator4.py      # Division task generator
│   └── Dockerfile         # Task generators Dockerfile
├── tasks/
│   └── tasks.py           # Task definitions
├── opentelemetry-collector/
│   ├── config.yaml        # OpenTelemetry collector configuration
│   └── Dockerfile         # OpenTelemetry collector Dockerfile
└── docker-compose.yml     # Docker services configuration

OpenTelemetry Configuration

The OpenTelemetry collector is configured to:

  • Receive traces and metrics via OTLP (HTTP and gRPC)
  • Process data using batch processor
  • Export detailed debug information

Celery Configuration

The Celery application is configured with:

  • 4 separate queues (queue1, queue2, queue3, queue4)
  • RPC result backend
  • Task result expiration: 3600 seconds
  • Default queue: queue1

Development

To set up the development environment:

  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r celery_app/requirements.txt
pip install -r task_generators/requirements.txt

Monitoring and Debugging

  • Use Flower dashboard to monitor task execution
  • Check OpenTelemetry collector logs for trace information
  • Monitor RabbitMQ queues for message flow

License

MIT License

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published