An implementation of 3D brain MRI super-resolution method by image gradient-tensor distance based patch clustering
-
Super-Resolution of 3D Brain MRI With Filter Learning Using Tensor Feature Clustering [Paper]
-
IEEE Access, 2022
-
3D Brain MRI Super-Resolution with Image Gradient Tensor Feature Clustering [Poster]
-
Organization for Human Brain Mapping Annual Meeting, 2021
-
Both Linux and Windows are supported.
-
Package Required: numpy, numba, scipy, skimage, nibabel
-
We got young-adult T1-weighted masked MRI brain Dataset from 'Human Connectome Project' (https://www.humanconnectome.org/study/hcp-young-adult)
-
We used HCP-900 dataset with 30 images to train, 867 images to estimate metrics.
-
Store your HR train data to 'train' folder, HR test data to 'test' folder. In test stage, data will be downscaled to estimate HR image.
.
├── train
| ├── T1w_acpc_dc_restore_brain_id1.nii.gz
| └── T1w_acpc_dc_restore_brain_id2.nii.gz
├── test
| ├── T1w_acpc_dc_restore_brain_id3.nii.gz
| └── T1w_acpc_dc_restore_brain_id4.nii.gz
├── result
| └── 110521
| ├── T1w_acpc_dc_restore_brain_id3.nii.gz
| ├── T1w_acpc_dc_restore_brain_id4.nii.gz
├── arrays
| ├── h_2x_1023.npy
| └── space_2x_1023.km
├── train.py
├── test.py
├── feature_model.py
├── filter_constant.py
├── kmeans_vector.py
├── preprocessing.py
├── filter_func.py
├── matrix_compute.py
└── util.py
- Run following commmand to start training.
git clone https://github.com/Snailpong/SR_Tensor.git
cd SR_Tensor
python train.py
- Run following commmand to get upscaled images.
python test.py
GNU General Public License 3.0 License