Skip to content

PyTorch implementation of semantic segmentation models (FCN, DeconvNet, PSPNet)

Notifications You must be signed in to change notification settings

Snailpong/semantic_segmentation_implementation

Repository files navigation

semantic_segmentation_implementation

PyTorch implementation of semantic segmentation models

Models

Dependencies

  • Pytorch
  • torchvision
  • numpy
  • PIL
  • tqdm
  • click

Dataset Settings

I used VOC2012 dataset with additonal labeled data.

.
└── data
    └── VOCdevkit
         └── VOC2012
            ├── JPEGImages
            |    ├── 2007_000027.jpg
            |    └── ...
            └── SegmentationClassAug
                 ├── 2007_000027.png
                 └── ...

Train & Test

python train.py --model_name=[fcn, deconvnet, pspnet]
python test.py --model_name=[fcn, deconvnet, pspnet] --image_path=(PATH)

Result

  • PSPNet evaluation with PSPNet trained 36 epochs (loss: 0.47 ~ 0.50)
1 1 1
Input imageTrue labelEstimated

Reference

About

PyTorch implementation of semantic segmentation models (FCN, DeconvNet, PSPNet)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages