-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added feature of Frequency Vs Energy Plot of real time audio (#94)
- Loading branch information
1 parent
6027a29
commit b523bf2
Showing
1 changed file
with
152 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import PySimpleGUI as sg | ||
import pyaudio | ||
import numpy as np | ||
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg | ||
import soundfile as sf | ||
import scipy.fft | ||
import matplotlib.pyplot as plt | ||
|
||
# VARS CONSTS: | ||
_VARS = {"window": False, "stream": False, "audioData": np.array([]), "audioBuffer": np.array([])} | ||
|
||
# pysimpleGUI INIT: | ||
AppFont = "Helvetica" | ||
sg.theme("DarkBlue3") | ||
|
||
layout = [ | ||
[ | ||
sg.Graph( | ||
canvas_size=(600, 600), | ||
graph_bottom_left=(-2, -2), | ||
graph_top_right=(102, 102), | ||
background_color="#809AB6", | ||
key="graph", | ||
tooltip="Frequency vs Energy graph" # Tooltip added | ||
) | ||
], | ||
[sg.Text("Progress:", text_color='white', font=('Helvetica', 15, 'bold')), sg.ProgressBar(4000, orientation="h", size=(20, 20), key="-PROG-")], | ||
[ | ||
sg.Button("Listen", font=AppFont, tooltip="Start listening"), | ||
sg.Button("Pause", font=AppFont, disabled=True, tooltip="Pause listening"), | ||
sg.Button("Resume", font=AppFont, disabled=True, tooltip="Resume listening"), | ||
sg.Button("Stop", font=AppFont, disabled=True, tooltip="Stop listening"), | ||
sg.Button("Save", font=AppFont, disabled=True, tooltip="Save the plot"), | ||
sg.Button("Exit", font=AppFont, tooltip="Exit the application"), | ||
], | ||
] | ||
|
||
_VARS["window"] = sg.Window("Mic to Frequency vs Energy plot", layout, finalize=True) | ||
graph = _VARS["window"]["graph"] | ||
|
||
# INIT vars: | ||
CHUNK = 1024 # Samples: 1024, 512, 256, 128 | ||
RATE = 44100 # Equivalent to Human Hearing at 40 kHz | ||
INTERVAL = 1 # Sampling Interval in Seconds -> Interval to listen | ||
TIMEOUT = 10 # In ms for the event loop | ||
pAud = pyaudio.PyAudio() | ||
|
||
# FUNCTIONS: | ||
|
||
def draw_figure(canvas, figure): | ||
figure_canvas_agg = FigureCanvasTkAgg(figure, canvas) | ||
figure_canvas_agg.draw() | ||
figure_canvas_agg.get_tk_widget().pack(side="top", fill="both", expand=1) | ||
return figure_canvas_agg | ||
|
||
def stop(): | ||
if _VARS["stream"]: | ||
_VARS["stream"].stop_stream() | ||
_VARS["stream"].close() | ||
_VARS["window"]["-PROG-"].update(0) | ||
_VARS["window"]["Stop"].Update(disabled=True) | ||
_VARS["window"]["Listen"].Update(disabled=False) | ||
|
||
def pause(): | ||
if _VARS["stream"].is_active(): | ||
_VARS["stream"].stop_stream() | ||
_VARS["window"]["Pause"].Update(disabled=True) | ||
_VARS["window"]["Resume"].Update(disabled=False) | ||
|
||
def resume(): | ||
if not _VARS["stream"].is_active(): | ||
_VARS["stream"].start_stream() | ||
_VARS["window"]["Pause"].Update(disabled=False) | ||
_VARS["window"]["Resume"].Update(disabled=True) | ||
|
||
def save(): | ||
# Ask the user for a directory to save the image file | ||
folder = sg.popup_get_folder('Please select a directory to save the files') | ||
if folder: | ||
# Save the figure as an image file | ||
fig.savefig(f'{folder}/output.png') | ||
sg.popup('Success', f'Image saved as {folder}/output.png') | ||
# Save the recorded audio data to a file | ||
sf.write(f'{folder}/output.wav', _VARS["audioBuffer"], RATE) | ||
sg.popup('Success', f'Audio saved as {folder}/output.wav') | ||
|
||
def callback(in_data, frame_count, time_info, status): | ||
_VARS["audioData"] = np.frombuffer(in_data, dtype=np.int16) | ||
_VARS["audioBuffer"] = np.append(_VARS["audioBuffer"], _VARS["audioData"]) | ||
return (in_data, pyaudio.paContinue) | ||
|
||
def listen(): | ||
_VARS["window"]["Stop"].Update(disabled=False) | ||
_VARS["window"]["Listen"].Update(disabled=True) | ||
_VARS["stream"] = pAud.open( | ||
format=pyaudio.paInt16, | ||
channels=1, | ||
rate=RATE, | ||
input=True, | ||
frames_per_buffer=CHUNK, | ||
stream_callback=callback, | ||
) | ||
_VARS["stream"].start_stream() | ||
|
||
# INIT: | ||
fig, ax = plt.subplots() | ||
fig_agg = draw_figure(graph.TKCanvas, fig) | ||
|
||
# MAIN LOOP | ||
while True: | ||
event, values = _VARS["window"].read(timeout=TIMEOUT) | ||
if event == "Exit": | ||
stop() | ||
pAud.terminate() | ||
break | ||
# for handling the closing of application | ||
if event == sg.WIN_CLOSED : | ||
_VARS["stream"].stop_stream() | ||
_VARS["stream"].close() | ||
pAud.terminate() | ||
break | ||
if event == "Listen": | ||
listen() | ||
_VARS["window"]["Save"].Update(disabled=False) | ||
if event == "Pause": | ||
pause() | ||
if event == "Resume": | ||
resume() | ||
if event == "Stop": | ||
stop() | ||
if event == "Save": | ||
save() | ||
|
||
elif _VARS["audioData"].size != 0: | ||
_VARS["window"]["-PROG-"].update(np.amax(_VARS["audioData"])) | ||
yy = scipy.fft.fft(_VARS["audioData"]) | ||
xx = np.linspace(0.0, RATE / 2, CHUNK // 2) | ||
ax.clear() | ||
|
||
# Calculating the energy | ||
energy = np.abs(yy[:CHUNK // 2]) ** 2 | ||
|
||
# Plot frequency vs energy | ||
ax.plot(xx, energy, label='Frequency vs Energy') | ||
|
||
# Update axis labels | ||
ax.set_ylabel("Energy") | ||
ax.set_xlabel("Frequency [Hz]") | ||
|
||
ax.grid(True) # Enable gridlines | ||
ax.legend() # Add a legend | ||
fig_agg.draw() # redraw the figure |