Skip to content

Code for "Lightweight and Efficient Human Pose Estimation Fusing Transformer and Attention"

License

Notifications You must be signed in to change notification settings

T1sweet/LEViTPose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 

Repository files navigation

Lightweight and Efficient Human Pose Estimation

Code coming soon...

Paper

Chengpeng Wu, Guangxing Tan, Haifeng Chen, Chunyu Li. Lightweight and Efficient Human Pose Estimation Fusing Transformer and Attention[J]. Computer Engineering and Applications. 2024.

吴程鹏, 谭光兴, 陈海峰, 李春宇. 融合Transformer和注意力的轻量高效人体姿态估计[J]. 计算机工程与应用. 2024.

The network architecture of LEViTPose

overview

Main Results

With the code contained in this repo, you should be able to reproduce the following results.

Results on MPII val and test set

Method Test set Input size Params GFLOPs Hea Sho Elb Wri Hip Kne Ank mean
LEViTPose-T MPII val 256×256 1.09M 0.89G 95.6 93.8 86.3 79.9 86.3 79.9 74.5 85.9
LEViTPose-S MPII val 256×256 2.16M 1.33G 96.1 95.0 87.9 81.9 87.8 82.6 77.7 87.7
LEViTPose-T MPII test 256×256 1.09M 0.89G 97.5 94.6 88.2 82.1 88.0 82.2 76.7 87.6
LEViTPose-S MPII test 256×256 2.16M 1.33G 97.8 95.4 89.6 84.1 89.1 84.0 79.8 89.0

Results on COCO val2017 and test-dev2017 set

Method Test set Input size AP AP .5 AP .75 AP (M) AP (L) AR
LEViTPose-S COCO val 256×256 71.0 91.6 78.5 68.2 75.1 74.1
LEViTPose-T COCO val 256×256 68.2 90.5 76.0 65.6 72.2 71.5
LEViTPose-S COCO test-dev 256×256 68.7 90.8 76.7 65.4 74.2 74.4

Comparison of inference speed of models in MPII Dataset

Method Params FLOPs FPS(GPU) FPS(CPU) mean
HRNet-W32 28.02M 9.85G 31.9 2.5 89.6
Hourglass-52 94.85M 28.67G 25.7 1.3 88.9
EfficientViT-M0 3.04M 1.89G 52.5 5.7 85.8
LiteHRNet-30 1.76M 0.56G 29.9 4.5 85.1
MobileNetV2 9.57M 2.12G 67.9 6.2 85.0
PVT-S 28.17M 5.47G 31.7 2.6 84.4
LEViTPose-S 2.16M 1.45G 55.0 6.4 87.7
LEViTPose-T 1.09M 0.89G 60.1 7.5 85.9

Visualization

Some examples of the prediction results of the LEViTPose network model for human posture include occlusion, multiple people, viewpoint and appearance change on the MPII (top) and COCO (bottom) data sets.

Visualization

Installation

1. Clone code

    git clone https://github.com/T1sweet/LEViTPose
    cd ./LEViTPose

2. Create a conda environment for this repo

    conda create -n LEViTPose python=3.9
    conda activate LEViTPose

3. Install PyTorch >= 1.6.0 following official instruction, e.g.

Our model is trained in a GPU platforms and relies on the following versions: torch==1.10.1+cu113, torchvision==0.11.2+cu113

    conda install pytorch torchvision cudatoolkit=11.3 -c pytorch

4. Install other dependency python packages

Our code is based on the MMPose 0.29.0 code database, and dependencies can be installed through the methods provided by MMPose. Install MMCV using MIM.

    conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
    pip install -U openmim
    mim install mmcv-full==1.4.5

Install other dependency.

    pip install -r requirements.txt

5. Prepare dataset

Download MPII and COCO from website and put the zip file under the directory following below structure, (xxx.json) denotes their original name.

./data
|── coco
│   └── annotations
|   |   └──coco_train.json(person_keypoints_train2017.json)
|   |   └──coco_val.json(person_keypoints_val2017.json)
|   |   └──coco_test.json(image_info_test-dev2017.json)
|   └── images
|   |   └──train2017
|   |   |   └──000000000009.jpg
|   |   └──val2017
|   |   |   └──000000000139.jpg
|   |   └──test2017
|   |   |   └──000000000001.jpg
├── mpii
│   └── annotations
|   |   └──mpii_train.json(refer to DEKR, link:https://github.com/HRNet/DEKR)
|   |   └──mpii_val.json
|   |   └──mpii_test.json
|   |   └──mpii_gt_val.mat
|   └── images
|   |   └──100000.jpg

Usage

1. Download trained model

2. Evaluate Model

Change the checkpoint path by modifying pretrained in LEViTPose-S_mpii_256x256.py, and run following commands: python tools/test.py config checkpoint config option means the configuration file, which must be set. checkpoint option means the training weight file and must be set.

# evaluate LEViTPose-S on mpii val set
python tools/test.py ../configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/LEViTPose-S_mpii_256x256.py /work_dir/LEViTPose/LEViTPose-S.pth

# evaluate LEViTPose-T on mpii val set
python tools/test.py ../configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/LEViTPose-T_mpii_256x256.py /work_dir/LEViTPose/LEViTPose-T.pth

# evaluate LEViTPose-S on coco val set
python tools/test.py ../configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/LEViTPose-S_coco_256x256.py /work_dir/LEViTPose/LEViTPose-S_coco.pth

3. Train Model

Change the checkpoint path by modifying pretrained in LEViTPose-S_mpii_256x256.py, and run following commands:

# evaluate LEViTPose-S on mpii val set
python tools/train.py ../configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/LEViTPose-S_mpii_256x256.py

# evaluate LEViTPose-S on coco val2017 set
python tools/train.py ../configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/LEViTPose-S_coco_256x256.py

Contact me

If you have any questions about this code or paper, feel free to contact me at CP935011539@outlook.com.

Citations

If you find this code useful for your research, please cite our paper:

@misc{wu2024LEViTPose,
    title   = {Lightweight and Efficient Human Pose Estimation Fusing Transformer and Attention},
    author  = {Chengpeng Wu, Guangxing Tan, Haifeng Chen, Chunyu Li},
    journal = {Computer Engineering and Applications},
    volume = {},
    number = {},
    year = {2024},
}

Acknowledgement

This algorithm is based on code database MMPose, and its main ideas are inspired by EfficientViT) and other papers.

@misc{mmpose2020,
    title={OpenMMLab Pose Estimation Toolbox and Benchmark},
    author={MMPose Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmpose}},
    year={2020}
}

About

Code for "Lightweight and Efficient Human Pose Estimation Fusing Transformer and Attention"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published