-
Notifications
You must be signed in to change notification settings - Fork 25
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
import improvised activities addressing issue Suggestion: Learning Ou…
…tcome and Activities for Change-of-Basis #457
- Loading branch information
Showing
2 changed files
with
234 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
<?xml version='1.0' encoding='UTF-8'?> | ||
<section xml:id="GT5" xmlns:xi="http://www.w3.org/2001/XInclude"> | ||
<title>Change of Basis (GT5)</title> | ||
<objectives> | ||
<ul> | ||
<li> | ||
<p> | ||
Calculate the change-of-basis matrix between two bases of <m>\IR^n</m>. | ||
</p> | ||
</li> | ||
</ul> | ||
</objectives> | ||
|
||
<subsection> | ||
<title>Warm Up</title> | ||
|
||
</subsection> | ||
|
||
<subsection><title>Class Activities</title> | ||
<remark> | ||
<p> | ||
So far, when working with the Euclidean vector space <m>\IR^n</m>, we have primarily worked with the standard basis <m>\mathcal{E}=\setList{\vec{e}_1,\dots, \vec{e}_n}</m>. | ||
We can explore alternative perspectives more easily if we expand our toolkit to analyze different bases. | ||
</p> | ||
</remark> | ||
<activity> | ||
<introduction> | ||
<p> | ||
Let <m>\cal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}1\\-1\\1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}}</m>. | ||
</p> | ||
</introduction> | ||
<task> | ||
<p> | ||
Is <m>\cal{B}</m> a basis of <m>\IR^3</m>? | ||
</p> | ||
<p> | ||
<ol marker="A."> | ||
<li> | ||
<p> | ||
Yes. | ||
</p> | ||
</li> | ||
<li> | ||
<p> | ||
No. | ||
</p> | ||
</li> | ||
</ol> | ||
</p> | ||
</task> | ||
<task> | ||
<p> | ||
Since <m>\cal{B}</m> is a basis, we know that if <m>\vec{v}\in \IR^3</m>, the following vector equation have will have a unique solution: | ||
<me>x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3=\vec{v}</me> | ||
Given this, we define a map <m>C_{\mathcal{B}}\colon\IR^3\to\IR^3</m> via the rule that <m>C_{\mathcal{B}}(\vec{v})</m> is equal to the unique solution to the above vector equation. | ||
The map <m>C_{\mathcal{B}}</m> is a linear map. | ||
</p> | ||
<p> | ||
Compute <m>C_{\mathcal{B}}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right).</m> | ||
</p> | ||
</task> | ||
<task> | ||
<p> | ||
Compute <m>C_\mathcal{B}(\vec{e}_1),C_\mathcal{B}(\vec{e}_2), C_\mathcal{B}(\vec{e}_3)</m> and, in doing so, write down the standard matrix <m>M_\mathcal{B}</m> of <m>C_\mathcal{B}</m>. | ||
</p> | ||
<sage language="octave"> | ||
<input> | ||
|
||
</input> | ||
<output> | ||
|
||
</output> | ||
</sage> | ||
</task> | ||
|
||
</activity> | ||
|
||
<observation> | ||
<p> | ||
Note that one way to compute <m>M_{\mathcal{B}}</m> is calculate the RREF of the following matrix: | ||
<me>\left[\begin{array}{ccc|ccc}1&1&0&1&0&0\\ | ||
0&-1&1&0&1&0\\ | ||
1&1&1&0&0&1\end{array}\right]\sim\left[\begin{array}{ccc|ccc}1&0&0&2&1&-1\\ | ||
0&1&0&-1&-1&1\\ | ||
0&0&1&-1&0&1\end{array}\right]</me> | ||
Thus, the matrix <m>M_{\mathcal{B}}</m> is the inverse of the matrix <m>[\vec{v}_1\ \vec{v}_2\ \vec{v}_3]</m>. | ||
That is: | ||
<me>M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \vec{v}_2\ \vec{v}_3].</me> | ||
</p> | ||
</observation> | ||
<definition xml:id="def-change-of-basis"> | ||
<statement> | ||
<p> | ||
Given a basis <m>\cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n}</m> of <m>\IR^n</m>, the <term>change of basis/coordinate</term> transformation <em>from</em> the standard basis <em>to</em> <m>\mathcal{B}</m> is the transformation <m>C_\mathcal{B}\colon\IR^n\to\IR^n</m> defined by the property that, for any vector <m>\vec{v}\in\IR^n</m>, the vector <m>C_\mathcal{B}(\vec{v})</m> is the unique solution to the vector equation: | ||
<me>x_1\vec{v}_1+\dots+x_n\vec{v}_n=\vec{v}.</me> | ||
Its standard matrix is called the change-of-basis matrix from the standard basis to <m>\mathcal{B}</m> and is denoted by <m>M_{\mathcal{B}}</m>. | ||
It satisfies the following: | ||
<me>M_{\mathcal{B}}^{-1}=[\vec{v}_1\ \cdots\ \vec{v}_n].</me> | ||
</p> | ||
<p> | ||
The vector <m>C_\mathcal{B}(\vec{v})</m> is the <m>\mathcal{B}</m>-coordinates of <m>\vec{v}</m>. | ||
If you work with standard coordinates, and I work with <m>\mathcal{B}</m>-coordinates, then to build the vector that you call <m>\vec{v}=\begin{bmatrix}a_1\\\vdots\\a_n\end{bmatrix}=a_1\vec{e}_1+\cdots+a_n\vec{e}_n</m>, I would first compute <m>C_\mathcal{B}(\vec{v})=\begin{bmatrix}x_1\\\vdots\\x_n\end{bmatrix}</m> and then build <m>\vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n</m>. | ||
</p> | ||
<p> | ||
In particular, notation as above, we would have: | ||
<me>a_1\vec{e}_1+\cdots a_n\vec{e}_n=\vec{v}=x_1\vec{v}_1+\cdots+x_n\vec{v}_n.</me> | ||
</p> | ||
</statement> | ||
</definition> | ||
|
||
|
||
<activity> | ||
<introduction> | ||
<p> | ||
Let <m>\vec{v}_1=\begin{bmatrix}1\\-2\\1\end{bmatrix},\ \vec{v}_2=\begin{bmatrix}-1\\0\\3\end{bmatrix},\ \vec{v}_3=\begin{bmatrix}0\\1\\-1\end{bmatrix}</m>, and <m>\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}</m> | ||
</p> | ||
</introduction> | ||
<task> | ||
<p> | ||
Calculate <m>M_{\mathcal{B}}</m> using technology. | ||
</p> | ||
<sage language="octave"> | ||
<input> | ||
|
||
</input> | ||
<output> | ||
|
||
</output> | ||
</sage> | ||
</task> | ||
<task> | ||
<p> | ||
Use your result to calculate <m>C_\mathcal{B}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right)</m> and express the vector <m>\begin{bmatrix}1\\1\\1\end{bmatrix}</m> as a linear combination of <m>\vec{v}_1,\vec{v}_2,\vec{v}_3</m>. | ||
</p> | ||
</task> | ||
</activity> | ||
<observation> | ||
<p> | ||
Let <m>T\colon\IR^n\to\IR^n</m> be a linear transformation and let <m>A</m> denote its standard matrix. | ||
If <m>\cal{B}=\setList{\vec{v}_1,\dots, \vec{v}_n}</m> is some other basis, then we have: | ||
<md> | ||
<mrow>M_\mathcal{B}AM_{\mathcal{B}}^{-1} \amp= M_\mathcal{B}A[\vec{v_1}\cdots\vec{v}_n] </mrow> | ||
<mrow> \amp= M_\mathcal{B}[T(\vec{v}_1)\cdots T(\vec{v}_n)]</mrow> | ||
<mrow> \amp= [C_\mathcal{B}(T(\vec{v}_1))\cdots C_\mathcal{B}(T(\vec{v}_n))]</mrow> | ||
</md> | ||
In other words, the matrix <m>M_{\mathcal{B}}AM_{\mathcal{B}}^{-1}</m> is the matrix whose columns consist of <em><m>\mathcal{B}</m>-coordinate</em> vectors of the image vectors <m>T(\vec{v}_i)</m>. | ||
The matrix <m>M_{\mathcal{B}}AM_{\mathcal{B}}^{-1}</m> is called the <alert>matrix of <m>T</m> with respect to <m>\mathcal{B}</m>-coordinates</alert>. | ||
</p> | ||
</observation> | ||
|
||
<activity> | ||
<introduction> | ||
<p> | ||
Let <m>\mathcal{B}=\setList{\vec{v}_1,\vec{v}_2,\vec{v}_3}=\setList{\begin{bmatrix}1\\-2\\1\end{bmatrix},\begin{bmatrix}-1\\0\\3\end{bmatrix},\begin{bmatrix}0\\1\\-1\end{bmatrix}}</m> be basis from the previous Activity. | ||
Let <m>T</m> denote the linear transformation whose standard matrix is given by: | ||
<me>A=\begin{bmatrix}9&4&4\\6&9&2\\-18&-16&-9\end{bmatrix}.</me> | ||
</p> | ||
</introduction> | ||
<task> | ||
<p> | ||
Calculate the matrix <m>M_\mathcal{B}AM_{\mathcal{B}}^{-1}</m>. | ||
</p> | ||
<sage language="octave"> | ||
<input> | ||
|
||
</input> | ||
<output> | ||
|
||
</output> | ||
</sage> | ||
</task> | ||
<task> | ||
<p> | ||
The matrix <m>A</m> describes how the standard basis of <m>\IR^3</m> is transformed by the linear transformation <m>T</m>. | ||
The matrix <m>M_\mathcal{B}AM_{\mathcal{B}}^{-1}</m> describes how <m>\cal{B}</m> is transformed (in <m>\mathcal{B}</m>-coordinates). | ||
Which of these two descriptions is easier for you to describe/understand/visualize and why? | ||
</p> | ||
</task> | ||
</activity> | ||
|
||
|
||
</subsection> | ||
|
||
<subsection> | ||
<title>Sample Problem and Solution</title> | ||
<example> | ||
<introduction> | ||
<p> | ||
Let <m>\mathcal{B}=\setList{\begin{bmatrix}-2\\-2\\1\end{bmatrix},\begin{bmatrix}-1\\-2\\-1\end{bmatrix},\begin{bmatrix}1\\3\\2\end{bmatrix}}</m>, and <m>\vec{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}</m>. | ||
</p> | ||
<task> | ||
<p> | ||
Explain and demonstrate how to verify that <m>\mathcal{B}</m> is a basis of <m>\IR^3</m> and how to calculate <m>M_\mathcal{B}</m>, the change-of-basis matrix from the standard basis of <m>\IR^3</m> to <m>\mathcal{B}</m>. | ||
</p> | ||
</task> | ||
<task> | ||
<p> | ||
Explain and demonstrate how to use <m>M_\mathcal{B}</m> to express <m>\vec{v}</m> in terms of <m>\mathcal{B}</m>-basis vectors. | ||
</p> | ||
</task> | ||
</introduction> | ||
<solution> | ||
<task> | ||
<p> | ||
We can accomplish both tasks by calculating the RREF of the following matrix: | ||
<me>\RREF\left[\begin{array}{ccc|ccc}-2&-1&1&1&0&0\\ | ||
-2&-2&3&0&1&0\\1&-1&2&0&0&1\end{array}\right] | ||
= | ||
\left[\begin{array}{ccc|ccc}1&0&0&1&-1&1\\ | ||
0&1&0&-7&5&-4\\ | ||
0&0&1&-4& 3&-2\end{array}\right].</me> | ||
The fact that the matrix to the left of the vertical bar is the identity matrix tells that <m>\mathcal{B}</m> is a basis. | ||
The matrix on the right hand side of the bar is equal to the change-of-basis matrix: | ||
<me>M_\mathcal{B}=\left[\begin{array}{ccc}1&-1&1\\ | ||
-7&5&-4\\ | ||
-4& 3&-2\end{array}\right].</me> | ||
</p> | ||
</task> | ||
<task> | ||
<p> | ||
By definition of the change of basis matrix, if <m>\vec{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}</m>, then the coordinates of <m>\vec{v}</m> with respect to <m>\mathcal{B}</m> are given by: | ||
<me>M_\mathcal{B}\vec{v}=M_\mathcal{B}=\left[\begin{array}{ccc}1&-1&1\\ | ||
-7&5&-4\\ | ||
-4& 3&-2\end{array}\right]\begin{bmatrix}1\\2\\3\end{bmatrix}=\begin{bmatrix}2\\-9\\-4\end{bmatrix}.</me> | ||
It follows that: | ||
<me>\begin{bmatrix}1\\2\\3\end{bmatrix}=2\begin{bmatrix}-2\\-2\\1\end{bmatrix} -9\begin{bmatrix}-1\\-2\\-1\end{bmatrix} -4\begin{bmatrix}1\\3\\2\end{bmatrix}. </me> | ||
</p> | ||
</task> | ||
</solution> | ||
</example> | ||
</subsection> | ||
|
||
</section> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters