The purpose of this activity is to see how each of these algorithms scales as the size of input grows.
There are four separate algorithms implemented below:
appendRandom
loop
binarSearch
nestedLoop
You will invoke each function multiple times with an increasingly large lists. You will update this README.md by replacing the emoji in the last column of each table with the corresponding number of operations that take place with each invocation. You can make commits to this file directly. We have given you a little help by console logging inside of each function so that all you have to do is count the number of times, each function console.logs a value.
Finally, after you have observed the number of operations for each function call, you will plot them on this graph to better visualize how they scale.
function appendRandom(list) {
let rand = Math.floor(Math.random() * 100);
list.push(rand);
console.log(`New List is ${list}`);
}
Append | Length of Input | # of Operations |
---|---|---|
appendRandom([]) | 0 | π΄ |
appendRandom(['a']) | 1 | π€ |
appendRandom(['a', 'b']) | 2 | π€ |
appendRandom(['a', 'b', 'c', 'd']) | 4 | π€ |
appendRandom(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) | 8 | π§ |
appendRandom(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p']) | 16 | π |
appendRandom(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'za', 'zb', 'zc', 'zd', 'ze', 'zf']) | 32 | π€― |
function loop(arr) {
for (let el in arr) {
console.log(el);
}
}
Loop | Length of Input | # of Operations |
---|---|---|
loop(['a']) | 1 | π€ |
loop(['a', 'b']) | 2 | π€ |
loop(['a', 'b', 'c', 'd']) | 4 | π€ |
loop(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) | 8 | π§ |
loop(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p']) | 16 | π |
loop(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z','za', 'zb', 'zc', 'zd', 'ze', 'zf']) | 32 | π€― |
function binarySearch(list, el) {
let low = 0;
let high = list.length - 1;
while (low <= high) {
let mid = Math.floor((high + low) / 2 );
let guess = list[mid];
console.log(guess);
if (guess === el) {
return `Found at index ${mid}`;
} else if (guess > el) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return null;
}
Binary Search | Length of Input | # of Operations |
---|---|---|
binarySearch(['a'], 'a') | 1 | π΄ |
binarySearch(['a', 'b'], 'b') | 2 | π€ |
binarySearch(['a', 'b', 'c', 'd'], 'c') | 4 | π€ |
binarySearch(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'], 'g') | 8 | π§ |
binarySearch(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p'], 'b') | 16 | π |
binarySearch(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z','za', 'zb', 'zc', 'zd', 'ze', 'zf'], 'zf') | 32 | π€― |
function nestedLoop(list){
for (let first in list) {
for (let second in list) {
console.log(first, second);
}
}
}
Nested Loop | Length of Input | # of Operations |
---|---|---|
nestedLoop(['a']) | 1 | π΄ |
nestedLoop(['a', 'b']) | 2 | π€ |
nestedLoop(['a', 'b', 'c']) | 3 | π€ |
nestedLoop(['a', 'b', 'c', 'd']) | 4 | π§ |
nestedLoop(['a', 'b', 'c', 'd', 'e']) | 5 | π€― |