Skip to content

Commit

Permalink
update affiliation, paper url, citation, and captions
Browse files Browse the repository at this point in the history
  • Loading branch information
gaot19 committed Mar 18, 2024
1 parent 361e88b commit b145555
Showing 1 changed file with 13 additions and 12 deletions.
25 changes: 13 additions & 12 deletions index.markdown
Original file line number Diff line number Diff line change
Expand Up @@ -104,22 +104,23 @@ src="http://b5tcdn.bang5mai.com/js/flag.js?v=156945351"></script>
<a href="https://skybhh19.github.io/" target="_blank">Tian Gao<sup>1</sup></a>&nbsp;&nbsp;&nbsp;
<a href="http://snasiriany.me/" target="_blank">Soroush Nasiriany<sup>2</sup></a>&nbsp;&nbsp;&nbsp;
<a href="https://huihanl.github.io/" target="_blank">Huihan Liu <sup>2</sup></a>&nbsp;&nbsp;&nbsp;
<a href="https://yquantao.github.io/" target="_blank">Quantao Yang<sup>2</sup></a>&nbsp;&nbsp;&nbsp;
<a href="https://yquantao.github.io/" target="_blank">Quantao Yang<sup>3</sup></a>&nbsp;&nbsp;&nbsp;
<a href="https://cs.utexas.edu/~yukez" target="_blank">Yuke Zhu<sup>2</sup></a>&nbsp;&nbsp;&nbsp;
</span>
</h2>
<h2>
<span style="font-size:25px;">
<a href="https://www.stanford.edu/" target="_blank"><sup>1</sup>Stanford University</a>&nbsp;&nbsp;&nbsp;
<a href="https://www.cs.utexas.edu/" target="_blank"><sup>2</sup>The University of Texas at Austin</a>
<a href="https://www.cs.utexas.edu/" target="_blank"><sup>2</sup>The University of Texas at Austin</a>&nbsp;&nbsp;&nbsp;
<a href="https://www.kth.se/en" target="_blank"><sup>3</sup>KTH Royal Institute of Technology</a>
</span>
</h2>
<!-- <h2>
<span style="font-size:20px;"> In submission to ICRA 2024</span>
</h2> -->

<!-- <center><h2><span style="font-size:25px;"><a><b>Paper</b></a> &emsp; <a><b>Code</b></a></span></h2></center> -->
<center><h2><span style="font-size:25px;"><a><b>Paper</b></a></span></h2></center>
<center><h2><span style="font-size:25px;"><a href="http://arxiv.org/abs/2403.00929" target="_blank"><b>Paper</b></a></span></h2></center>
<!-- <center><h2><span style="font-size:25px;"><a href="https://arxiv.org/abs/2210.11435" target="_blank"><b>Paper</b></a> &emsp; <a href="https://github.com/UT-Austin-RPL/sailor" target="_blank"><b>Code</b></a></span></h2></center> -->

<p>
Expand Down Expand Up @@ -153,7 +154,7 @@ Imitation learning has shown great potential for enabling robots to acquire comp
<tr>
<td>
<p align="justify" width="20%">
We present a data-efficient imitation learning framework that scaffolds task demonstrations into behavior primitives. Given task demonstrations, we utilize a trajectory parser to parse each demonstration into a sequence of primitive types and their corresponding parameters. Subsequently, we use imitation learning to acquire a policy capable of predicting primitive types and corresponding parameters based on observations.
We present a data-efficient imitation learning framework that scaffolds manipulation tasks with behavior primitives, breaking down long human demonstrations into concise, simple behavior primitive sequences. Given task demonstrations, we utilize a trajectory parser to parse each demonstration into a sequence of primitive types and their corresponding parameters. Subsequently, we use imitation learning to train a policy capable of predicting primitive types and corresponding parameters based on observations.
</p></td></tr></table>


Expand All @@ -172,7 +173,7 @@ Imitation learning has shown great potential for enabling robots to acquire comp
</table>

<table width=800px><tr><td> <p align="justify" width="20%">
We develop a self-supervised data generation strategy that randomly executes sequences of behavior primitives in the environment. With the generated dataset, we train an inverse dynamics model (IDM) that maps initial states and final states from segments in task demonstrations to primitive types and corresponding parameters. To derive the optimal primitive sequences, we build a trajectory parser capable of parsing task demonstrations into primitive sequences using the learned inverse dynamics model. Finally, we train the policy using parsed primitive sequences.</p></td></tr></table>
We develop a self-supervised data generation strategy that randomly executes sequences of behavior primitives in the environment. With the generated dataset, we train an inverse dynamics model (IDM) that maps initial states and final states from segments in task demonstrations to primitive types and corresponding parameters. To derive the optimal primitive sequences, we build a trajectory parser capable of parsing task demonstrations into primitive sequences using dynamic programming. Finally, we train the policy using parsed primitive sequences.</p></td></tr></table>

<br>

Expand Down Expand Up @@ -211,7 +212,7 @@ We perform evaluations on three tasks from the robosuite simulator. The first tw
<br>
<br>
<table width=800px><tr><td> <p align="justify" width="20%">
Our method significantly outperforms all baselines, achieving success rates exceeding 95% across all tasks with remarkable robustness. This showcases our method's effectiveness in achieving data-efficient imitation learning through the decomposition of sensorimotor demonstrations into concise primitive sequences to simplify task complexity.
Our method significantly outperforms all baselines, achieving success rates exceeding 95% across all tasks with remarkable robustness. This showcases our method's effectiveness in achieving data-efficient imitation learning through the decomposition of task demonstrations into concise primitive sequences to simplify task complexity.
</p></td></tr></table>


Expand Down Expand Up @@ -305,12 +306,12 @@ For each task, we select five human demonstrations and visualize the segmented p
<td>
<left>
<pre><code style="display:block; overflow-x: auto">
<!--@inproceedings{nasiriany2022sailor,
title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
booktitle={Conference on Robot Learning (CoRL)},
year={2022}
}-->
@article{gao2024prime,
title={PRIME: Scaffolding Manipulation Tasks with Behavior Primitives for Data-Efficient Imitation Learning},
author={Gao, Tian and Nasiriany, Soroush and Liu, Huihan and Yang, Quantao and Zhu, Yuke},
journal={arXiv preprint arXiv:2403.00929},
year={2024}
}
</code></pre>
</left></td></tr></table>
<br><br>
Expand Down

0 comments on commit b145555

Please sign in to comment.