Skip to content
/ cMolGPT Public

GPT (Generative Pre-trained Transformer) for de novo molecular design by enforcing specified targets

Notifications You must be signed in to change notification settings

VV123/cMolGPT

Repository files navigation

💊 cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation

Github repo stars GitHub last commit

📝 Medium post

Implementation of "cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation". Enforcing target embeddings as queries and keys.

Please feel free to open an issue or email wenlu.wang.1@gmail.com and ye.wang@biogen.com if you have any questions. We will respond as soon as we can.

Dependencies

environment_v100.yml tested on NVIDIA V100

environment_a6000.yml tested on RTX A6000

Create env from yml file

Data

Please download this repo and put the folder in the root directory. If you would like to finetune with your own target data, please replace 'target.smi'.

How to run

*unzip train.sim.zip

Train

  python3 main.py --batch_size 512 --mode train \
                  --path model_base.h5 

Fine-tune

  python3 main.py --batch_size 512 --mode finetune \
                  --path model_base.h5 --loadmodel

*In the case of fine-tuning, the base model will be overwritten in place.

*You can change the number of targets in model_auto.py.

Infer/Generate

  python3 main.py --mode infer --target [0/1/2/3] --path model_finetune.h5

No target

  python3 main.py --mode infer --target 0 --path model_finetune.h5

Target 2

  python3 main.py --mode infer --target 2 --path model_finetune.h5

About

GPT (Generative Pre-trained Transformer) for de novo molecular design by enforcing specified targets

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages