forked from gekath/reacher
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlqr.py
436 lines (336 loc) · 13.9 KB
/
lqr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import numpy as np
from dynamics import LinearGaussian, Dynamics
import scipy as sp
import scipy.linalg as splinalg
from function_names import *
# from Simulation import *
_MAX_ITER = 50
_THRESHOLD = 1.0
global iteration_state_repo
global iteration_action_repo
global state_norms
global action_norms
def set_norms(sn, sa):
global state_norms
global action_norms
state_norms = sn
action_norms = sa
def sample_dist(state, actions):
global hyperparameters
samples = []
dynamics = Dynamics()
# dynamics.fit(state,actions)
for traj_no in range(state.shape[0]):
# trajectory = 6
dynamics = Dynamics()
traj_states = state[traj_no,:,:]
traj_actions = actions[traj_no,:,:]
vals,acts = getPreviousSA(traj_no,traj_states, traj_actions)
T, dx = traj_states.shape
du = traj_actions.shape[1]
hyperparameters = {'wx': [1/float(dx) for i in range(dx)],
'wu': [1/float(du) for i in range(du)]}
eta = 1e-16
dynamics.fit(vals, acts)
prev_traj_dist = init_traj_dist(traj_states, traj_actions, dynamics, hyperparameters)
traj_dist = prev_traj_dist
prev_mu, prev_sigma = forward(prev_traj_dist, dynamics)
prev_eta = -np.Inf
min_eta = prev_eta
_MAX_ITER = 5
for iter in range(_MAX_ITER):
# Collect samples in simulation
for sample in range(10):
s, a = get_sample(traj_dist,traj_no)
push_sample(traj_no, s, a)
vals, acts = getPreviousSA(traj_no, traj_states, traj_actions)
dynamics.fit(vals,acts,.01)
traj_dist, new_eta = backward(traj_states, traj_actions, dynamics, eta, hyperparameters)
print(new_eta)
print('try again')
mu, sigma = forward(traj_dist, dynamics)
if new_eta > prev_eta:
min_eta = new_eta
# dynamics.fit(new_mu,new_sigma)
# # TODO: calculate KL divergence between new traj_dist and prev_traj_dist
# # check constraint, that kl_div <= _THRESHOLD
# kl_div = calculate_KL_div(mu, prev_mu, traj_dist, prev_traj_dist)
# print(kl_div)
# if kl_div <= _THRESHOLD:
# break
prev_traj_dist = traj_dist
#Take initial sample
samples = np.array([-np.random.multivariate_normal(mu[t], sigma[t], 1).flatten() for t in range(T)])
commands = samples[:,28:]
# raw_input()
f = open('trajectories/target/Traj{}pred.txt'.format(traj_no+1), 'w')
print('here')
for act in commands:
f.write("{}\n".format(" ".join(str(x) for x in act.flatten())))
f.close()
return samples
def get_sample(traj_dist,experiment_id):
#Start a simulation and do the stuff
functions = {}
args = {}
real_fun(functions)
states = np.genfromtxt('trajectories/target/Traj'+str(experiment_id+1)+'state.txt', delimiter=',',dtype=np.float32)
actions = np.genfromtxt('trajectories/target/Traj'+str(experiment_id+1)+'action.txt' ,dtype=np.float32)
T,d = states.shape
states = states[:,3:]
states[np.isnan(states)] = 0
actions[np.isnan(actions)] = 0
#Create simulation
# Sim = Simulation(function=functions["Traj{}".format(str(experiment_id+1))], args=[[0,0,3],0])
# Sim.restart()
f = open('trajectories/target/Traj{}pred.txt'.format(experiment_id+1),'w+')
r = open('trajectories/target/Traj{}residuals.txt'.format(experiment_id+1),'w+')
for timestep in range(T-1):
# states[timestep,:] = normalize(state_norms[experiment_id],controller.getDif(Sim.cid,Sim.copter,Sim.target))
old = actions[timestep,:].copy()
# actions[timestep,:] = denormalize(action_norms[experiment_id], get_action(traj_dist,states[timestep,:],timestep)[0])
# Sim.forward(actions[timestep,:].tolist())
f.write(str(actions[timestep,:])+'\n')
r.write(str(old-actions[timestep,:])+'\n')
#Sim.forward()
# Sim.sync()
# print(vrep.simxStopSimulation(Sim.cid,vrep.simx_opmode_oneshot_wait))
f.close()
r.close()
return states,actions
def normalize(norms,val):
mean, dif = norms[0], norms[1]
return (val - mean)/dif
def denormalize(norms,val):
mean, dif = norms[0], norms[1]
return (val * dif) + mean
def get_action(traj_dist, state, t):
return -np.random.multivariate_normal(np.dot(traj_dist.K[t, :, :], state) + traj_dist.k[t, :], traj_dist.covar[t, :, :], 1)
def push_sample(traj_index,states,act):
global iteration_state_repo
global iteration_action_repo
firstempty = getLast(iteration_state_repo[traj_index])
iteration_state_repo[traj_index][firstempty] = states
iteration_action_repo[traj_index][firstempty] = act
def calculate_KL_div(new_mu, prev_mu, cur_traj_dist, prev_traj_dist):
""" Calculate KL divergence for two multivariate Gaussian distributions. """
T, du, dx = cur_traj_dist.dimensions
# (1 x T) matrix, div for each time step
kl_div = np.zeros((1, T))
for t in range(T):
new_mu_t = new_mu[t,:]
prev_mu_t = prev_mu[t,:]
prev_cov = prev_traj_dist.covar[t,:,:]
new_cov = cur_traj_dist.covar[t,:,:]
new_inv_cov = cur_traj_dist.inv_cov[t,:,:]
print(prev_cov.shape)
print(new_cov.shape)
print(new_inv_cov.shape)
kl_div_t = 0.5 * (np.trace(new_inv_cov * prev_cov) +\
(new_mu_t - prev_mu_t).T.dot(new_inv_cov).dot(new_mu_t - prev_mu_t) - T + np.log(np.det(new_cov)) - np.log(np.det(prev_cov)))
kl_div[t] = max(0, kl_div_t)
# sum total kl_div over all time steps
return np.sum(kl_div)
def compute_costs(traj_dist, eta, state, action, hyperparameters):
"""
IN:
traj_dist: trajectory dist p(ut | xt)
eta (dual variable)
state: (T x dx)
action: (T x du)
hyperparameters: dict{'wu': (1 x du) of weights for action
'wx': (1 x dx) of weights for state
OUT:
Hessian: (T x (du + dx) x (du + dx)) matrix
Jacobian: (T x (du+dx)) matrix
(both Hessian, Jacobian taken w.r.t. [xt ; ut]
"""
T = traj_dist.dimensions[0]
hessian, jacobian = get_jacobian_hessian(eta, state, action, hyperparameters)
K = traj_dist.K
k = traj_dist.k
inv_cov = traj_dist.inv_covar
for t in range(T-1, -1, -1):
jacobian[t,:] += np.hstack([K[t, :, :].T.dot(inv_cov[t, :, :]).dot(k[t, :]),
-inv_cov[t,:,:].dot(k[t,:])])
hessian[t,:,:] += np.vstack([np.hstack([K[t,:,:].T.dot(inv_cov[t,:,:]).dot(K[t,:,:]),
-K[t,:,:].T.dot(inv_cov[t,:,:])]),
np.hstack([-inv_cov[t,:,:].dot(K[t,:,:]), inv_cov[t,:,:]])])
return hessian, jacobian
def get_jacobian_hessian(eta, state, action, hyperparameters):
"""
IN:
eta
state: (T x dx)
action: (T x du)
hyperparameters: dict{'wu': (1 x du) of weights for action
'wx': (1 x dx) of weights for state
OUT:
Hessian: (T x (du + dx) x (du + dx)) matrix
Jacobian: (T x (du+dx)) matrix
(both Hessian, Jacobian taken w.r.t. [xt ; ut]
"""
wx = np.array(hyperparameters['wx'])
wu = np.array(hyperparameters['wu'])
T, du = action.shape
dx = state.shape[1]
jacobian = np.concatenate(( wx[:,np.newaxis].T * state, wu[:, np.newaxis].T * action), axis=1)
lxx = np.diag(wx)
luu = np.diag(wu)
lux = np.zeros((dx, du))
hessian = np.concatenate((np.concatenate((lxx, lux), axis=1), np.concatenate((lux.T, luu), axis=1)))
hessian_final = np.tile(hessian, [T, 1, 1]) # For all trajectories
return hessian_final / eta, jacobian / eta
def init_traj_dist(state, action, dynamics, hyperparameters):
T, du = action.shape
dx = state.shape[1]
K = np.zeros((T, du, dx))
k = np.zeros((T, du))
inv_covar = np.zeros((T, du, du))
covar = np.zeros((T, du, du))
dx_slice = slice(dx)
du_slice = slice(dx, dx+du) # slice out actions
vt = np.zeros(dx)
vtt = np.zeros((dx, dx))
eta = 1e-20
ctt, ct = get_jacobian_hessian(eta, state, action, hyperparameters)
Fm = dynamics.Fm
fv = dynamics.fv
# backward pass
for t in range(T-1, -1, -1):
qtt = ctt[t, :, :] + Fm[t,:,:].T.dot(vtt).dot(Fm[t,:,:])
qt = ct[t, :] + Fm[t,:, :].T.dot(vt + vtt.dot(fv[t,:]))
# LU decomposition
P, L, U = splinalg.lu(qtt[du_slice, du_slice])
inv_covar[t, :, :] = qtt[du_slice, du_slice]
covar[t, :, :] = sp.linalg.solve_triangular(
U, splinalg.solve_triangular(L, np.eye(du), lower=True)
)
K[t, :, :] = -sp.linalg.solve_triangular(
U, splinalg.solve_triangular(L, qtt[du_slice, dx_slice], lower=True)
)
k[t, :] = -sp.linalg.solve_triangular(
U, splinalg.solve_triangular(L, qt[du_slice], lower=True)
)
vtt = qtt[dx_slice, dx_slice] + qtt[dx_slice, du_slice].dot(K[t, :, :])
vt = qt[dx_slice] + qtt[dx_slice, du_slice].dot(k[t,:])
vtt = 0.5* (vtt + vtt.T)
return LinearGaussian(K, k, covar, inv_covar)
def forward(traj_dist, dynamics):
# get dimensions of action, state matrices
T, du, dx = traj_dist.dimensions
dx_slice = slice(dx)
# Initialize mu, sigma
mu = np.zeros((T, dx + du))
sigma = np.zeros((T, dx+du, dx + du))
Fm = dynamics.Fm
fv = dynamics.fv
covar = dynamics.covar
sigma[0, dx_slice, dx_slice] = dynamics.x0sigma
mu[0, dx_slice] = dynamics.x0mu
for t in range(T):
sigma[t, :, :] = np.vstack([
np.hstack([
sigma[t, dx_slice, dx_slice],
sigma[t, dx_slice, dx_slice].dot(traj_dist.K[t, :, :].T)
]),
np.hstack([
traj_dist.K[t, :, :].dot(sigma[t, dx_slice, dx_slice]),
traj_dist.K[t, :, :].dot(sigma[t, dx_slice, dx_slice]).dot(
traj_dist.K[t, :, :].T) + traj_dist.covar[t, :, :]
])
])
mu[t, :] = np.hstack([
mu[t, dx_slice],
traj_dist.K[t, :, :].dot(mu[t, dx_slice]) + traj_dist.k[t, :]
])
if t < T - 1:
sigma[t+1, dx_slice, dx_slice] = Fm[t, :, :].dot(sigma[t, :, :]).dot(Fm[t, :, :].T) + covar[t, :, :] # Transition
mu[t+1, dx_slice] = Fm[t, :, :].dot(mu[t, :]) + fv[t,:] #Transition
return mu, sigma
def backward(state, action, dynamics, eta, hyperparameters):
T, dx = state.shape
du = action.shape[1]
# Empty gaussian
K = np.zeros((T, du, dx))
k = np.zeros((T, du))
inv_cov = np.zeros((T, du, du))
cov = np.zeros((T, du, du))
traj_dist = LinearGaussian(K, k, cov, inv_cov)
dx_slice = slice(dx)
du_slice = slice(dx, dx+du)
eta0 = eta
del_ = 1e-32
Fm = dynamics.Fm
fv = dynamics.fv
linalgerr = True
while linalgerr:
linalgerr = False
vxx = np.zeros((T, dx, dx))
vx = np.zeros((T, dx))
ctt, ct = compute_costs(traj_dist, eta, state, action, hyperparameters)
for t in range(T-1, -1, -1):
qtt = ctt[t, :, :]
qt = ct[t, :]
if t < T-1:
qtt = qtt + Fm[t,:,:].T.dot(vxx[t+1,:,:]).dot(Fm[t, :, :])
qt = qt + Fm[t,:,:].T.dot(vx[t+1, :] + vxx[t+1,:,:].dot(fv[t,:]))
qtt = 0.5 * (qtt + qtt.T)
try:
# LU decomposition
P, L, U = splinalg.lu(qtt[du_slice, du_slice])
inv_cov[t, :, :] = qtt[du_slice, du_slice]
cov[t, :, :] = sp.linalg.solve_triangular(
U, splinalg.solve_triangular(L, np.eye(du), lower=True)
)
K[t, :, :] = -sp.linalg.solve_triangular(
U, splinalg.solve_triangular(L, qtt[du_slice, dx_slice], lower=True)
)
k[t, :] = -sp.linalg.solve_triangular(
U, splinalg.solve_triangular(L, qt[du_slice], lower=True)
)
print('poop')
except np.linalg.LinAlgError:
linalgerr = True
break
traj_dist.inv_cov = inv_cov
traj_dist.cov = cov
traj_dist.K = K
traj_dist.k = k
vxx[t,:,:] = qtt[dx_slice, dx_slice] + qtt[dx_slice, du_slice].dot(K[t, :, :])
vx[t,:] = qt[dx_slice] + qtt[dx_slice, du_slice].dot(k[t, :])
vxx[t,:,:] = 0.5 * (vxx[t,:,:] + vxx[t,:,:].T)
if linalgerr:
old_eta = eta
eta = eta0 + del_
del_ *= 2 # Increase del_ exponentially on failure.
if eta >= 1e16:
if np.any(np.isnan(Fm)) or np.any(np.isnan(fv)):
raise ValueError('NaNs encountered in dynamics!')
raise ValueError('Failed to find PD solution even for very \
large eta (check that dynamics and cost are \
reasonably well conditioned)!')
return traj_dist, eta
def setup():
global iteration_state_repo
global iteration_action_repo
iteration_state_repo = [[0]*100]*100
iteration_action_repo = [[0]*100]*100
setup()
def getLast(list):
i = 0
while i < len(list)-1 and not type(list[i]) == int:
i = i+1
return i
def getPreviousSA(index,traj,act):
global iteration_state_repo
global iteration_action_repo
if (type(iteration_state_repo[index][0]) == int):
#Load in copy
for x in range(3):
iteration_state_repo[index][x] = traj
iteration_action_repo[index][x] = act
l = getLast(iteration_state_repo[index])
out_states = np.asarray(iteration_state_repo[index][l-3:l])
out_actions = np.asarray(iteration_action_repo[index][l - 3:l])
return out_states, out_actions