-
Notifications
You must be signed in to change notification settings - Fork 62
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
18 changed files
with
530 additions
and
42 deletions.
There are no files selected for viewing
81 changes: 81 additions & 0 deletions
81
configs/benchmarks/classification/_base_/datasets/cifar100_swin_ft_sz224_8xbs128.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# Refers to `_RAND_INCREASING_TRANSFORMS` in pytorch-image-models | ||
rand_increasing_policies = [ | ||
dict(type='AutoContrast'), | ||
dict(type='Equalize'), | ||
dict(type='Invert'), | ||
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)), | ||
dict(type='Posterize', magnitude_key='bits', magnitude_range=(4, 0)), | ||
dict(type='Solarize', magnitude_key='thr', magnitude_range=(256, 0)), | ||
dict(type='SolarizeAdd', magnitude_key='magnitude', magnitude_range=(0, 110)), | ||
dict(type='ColorTransform', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Contrast', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Brightness', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Shear', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.3), direction='horizontal'), | ||
dict(type='Shear', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.3), direction='vertical'), | ||
dict(type='Translate', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.45), direction='horizontal'), | ||
dict(type='Translate', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.45), direction='vertical'), | ||
] | ||
|
||
# dataset settings | ||
data_source_cfg = dict(type='CIFAR100', root='data/cifar100/') | ||
|
||
dataset_type = 'ClassificationDataset' | ||
img_norm_cfg = dict(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.201]) | ||
train_pipeline = [ | ||
dict(type='RandomResizedCrop', size=224, interpolation=3, scale=[0.2, 1]), # bicubic | ||
dict(type='RandomHorizontalFlip'), | ||
dict(type='RandAugment', | ||
policies=rand_increasing_policies, | ||
num_policies=2, total_level=10, | ||
magnitude_level=9, magnitude_std=0.5, # DeiT or Swin | ||
hparams=dict( | ||
pad_val=[104, 116, 124], interpolation='bicubic')), | ||
dict( | ||
type='RandomErasing_numpy', # before ToTensor and Normalize | ||
erase_prob=0.25, | ||
mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, | ||
fill_color=[104, 116, 124], | ||
fill_std=[58, 57, 58]), | ||
] | ||
test_pipeline = [ | ||
dict(type='Resize', size=256, interpolation=3), # 0.85 | ||
dict(type='CenterCrop', size=224), | ||
dict(type='ToTensor'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
] | ||
# prefetch | ||
prefetch = True | ||
if not prefetch: | ||
train_pipeline.extend([dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) | ||
|
||
data = dict( | ||
imgs_per_gpu=128, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type=dataset_type, | ||
data_source=dict(split='train', **data_source_cfg), | ||
pipeline=train_pipeline, | ||
prefetch=prefetch, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
data_source=dict(split='test', **data_source_cfg), | ||
pipeline=test_pipeline, | ||
prefetch=False), | ||
) | ||
|
||
# validation hook | ||
evaluation = dict( | ||
initial=False, | ||
interval=1, | ||
imgs_per_gpu=100, | ||
workers_per_gpu=4, | ||
eval_param=dict(topk=(1, 5))) | ||
|
||
# checkpoint | ||
checkpoint_config = dict(interval=10, max_keep_ckpts=1) |
87 changes: 87 additions & 0 deletions
87
configs/benchmarks/classification/_base_/datasets/stl10_swin_ft_sz96_8xbs128.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
# Refers to `_RAND_INCREASING_TRANSFORMS` in pytorch-image-models | ||
rand_increasing_policies = [ | ||
dict(type='AutoContrast'), | ||
dict(type='Equalize'), | ||
dict(type='Invert'), | ||
dict(type='Rotate', magnitude_key='angle', magnitude_range=(0, 30)), | ||
dict(type='Posterize', magnitude_key='bits', magnitude_range=(4, 0)), | ||
dict(type='Solarize', magnitude_key='thr', magnitude_range=(256, 0)), | ||
dict(type='SolarizeAdd', magnitude_key='magnitude', magnitude_range=(0, 110)), | ||
dict(type='ColorTransform', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Contrast', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Brightness', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Sharpness', magnitude_key='magnitude', magnitude_range=(0, 0.9)), | ||
dict(type='Shear', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.3), direction='horizontal'), | ||
dict(type='Shear', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.3), direction='vertical'), | ||
dict(type='Translate', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.45), direction='horizontal'), | ||
dict(type='Translate', | ||
magnitude_key='magnitude', magnitude_range=(0, 0.45), direction='vertical'), | ||
] | ||
|
||
# dataset settings | ||
data_source_cfg = dict(type='ImageNet') | ||
# ImageNet dataset | ||
data_train_list = 'data/meta/STL10/train_5k_labeled.txt' | ||
data_train_root = 'data/stl10/train/' | ||
data_test_list = 'data/meta/STL10/test_8k_labeled.txt' | ||
data_test_root = 'data/stl10/test/' | ||
|
||
dataset_type = 'ClassificationDataset' | ||
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | ||
train_pipeline = [ | ||
dict(type='RandomResizedCrop', size=96, interpolation=3, scale=[0.2, 1]), # bicubic | ||
dict(type='RandomHorizontalFlip'), | ||
dict(type='RandAugment', | ||
policies=rand_increasing_policies, | ||
num_policies=2, total_level=10, | ||
magnitude_level=9, magnitude_std=0.5, # DeiT or Swin | ||
hparams=dict( | ||
pad_val=[104, 116, 124], interpolation='bicubic')), | ||
dict( | ||
type='RandomErasing_numpy', # before ToTensor and Normalize | ||
erase_prob=0.25, | ||
mode='rand', min_area_ratio=0.02, max_area_ratio=1 / 3, | ||
fill_color=[104, 116, 124], | ||
fill_std=[58, 57, 58]), | ||
] | ||
test_pipeline = [ | ||
dict(type='ToTensor'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
] | ||
# prefetch | ||
prefetch = True | ||
if not prefetch: | ||
train_pipeline.extend([dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) | ||
|
||
data = dict( | ||
imgs_per_gpu=128, | ||
workers_per_gpu=8, | ||
train=dict( | ||
type=dataset_type, | ||
data_source=dict( | ||
list_file=data_train_list, root=data_train_root, | ||
**data_source_cfg), | ||
pipeline=train_pipeline, | ||
prefetch=prefetch, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
data_source=dict( | ||
list_file=data_test_list, root=data_test_root, **data_source_cfg), | ||
pipeline=test_pipeline, | ||
prefetch=False, | ||
)) | ||
|
||
# validation hook | ||
evaluation = dict( | ||
initial=False, | ||
interval=1, | ||
imgs_per_gpu=100, | ||
workers_per_gpu=4, | ||
eval_param=dict(topk=(1, 5))) | ||
|
||
# checkpoint | ||
checkpoint_config = dict(interval=1, max_keep_ckpts=1) |
52 changes: 52 additions & 0 deletions
52
configs/benchmarks/classification/_base_/datasets/stl10_sz96_4xbs64.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,52 @@ | ||
# dataset settings | ||
data_source_cfg = dict(type='ImageNet') | ||
# ImageNet dataset | ||
data_train_list = 'data/meta/STL10/train_5k_labeled.txt' | ||
data_train_root = 'data/stl10/train/' | ||
data_test_list = 'data/meta/STL10/test_8k_labeled.txt' | ||
data_test_root = 'data/stl10/test/' | ||
|
||
dataset_type = 'ClassificationDataset' | ||
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | ||
train_pipeline = [ | ||
dict(type='RandomResizedCrop', size=96, interpolation=3, scale=[0.2, 1]), # bicubic | ||
dict(type='RandomHorizontalFlip'), | ||
] | ||
test_pipeline = [ | ||
dict(type='ToTensor'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
] | ||
# prefetch | ||
prefetch = True | ||
if not prefetch: | ||
train_pipeline.extend([dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg)]) | ||
|
||
data = dict( | ||
imgs_per_gpu=64, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type=dataset_type, | ||
data_source=dict( | ||
list_file=data_train_list, root=data_train_root, | ||
**data_source_cfg), | ||
pipeline=train_pipeline, | ||
prefetch=prefetch, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
data_source=dict( | ||
list_file=data_test_list, root=data_test_root, **data_source_cfg), | ||
pipeline=test_pipeline, | ||
prefetch=False, | ||
)) | ||
|
||
# validation hook | ||
evaluation = dict( | ||
initial=False, | ||
interval=1, | ||
imgs_per_gpu=100, | ||
workers_per_gpu=4, | ||
eval_param=dict(topk=(1, 5))) | ||
|
||
# checkpoint | ||
checkpoint_config = dict(interval=10, max_keep_ckpts=1) |
33 changes: 33 additions & 0 deletions
33
configs/benchmarks/classification/cifar100/deit_small_p16_linear_sz224_4xb128_cos_ep100.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
_base_ = [ | ||
'../_base_/models/deit_small_p16.py', | ||
'../_base_/datasets/cifar100_swin_ft_sz224_8xbs128.py', | ||
'../_base_/default_runtime.py', | ||
] | ||
|
||
# MoCo v3 linear probing setting | ||
|
||
# model settings | ||
model = dict( | ||
backbone=dict(frozen_stages=12, norm_eval=True), | ||
head=dict( | ||
loss=dict(type='LabelSmoothLoss', | ||
label_smooth_val=0.1, num_classes=100, mode='original', loss_weight=1.0), | ||
num_classes=100)) | ||
|
||
# data | ||
data = dict(imgs_per_gpu=128, workers_per_gpu=8) # total 128*8=1024, 8 GPU linear cls | ||
|
||
# optimizer | ||
optimizer = dict(type='SGD', lr=1.0, momentum=0.9, weight_decay=0.) | ||
|
||
# learning policy | ||
lr_config = dict(policy='CosineAnnealing', min_lr=0.) | ||
|
||
# fp16 | ||
use_fp16 = False | ||
fp16 = dict(type='mmcv', loss_scale='dynamic') | ||
# optimizer args | ||
optimizer_config = dict(update_interval=1, grad_clip=None) | ||
|
||
# runtime settings | ||
runner = dict(type='EpochBasedRunner', max_epochs=100) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
33 changes: 33 additions & 0 deletions
33
configs/benchmarks/classification/imagenet/vit_small_p16_linear_sz224_8xb128_step_ep90.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
_base_ = [ | ||
'../_base_/models/vit_small_p16.py', | ||
'../_base_/datasets/imagenet_swin_sz224_8xbs128.py', | ||
'../_base_/default_runtime.py', | ||
] | ||
|
||
# MoCo v3 linear probing setting | ||
|
||
# model settings | ||
model = dict( | ||
backbone=dict(frozen_stages=12, norm_eval=True), | ||
head=dict( | ||
loss=dict(type='LabelSmoothLoss', | ||
label_smooth_val=0.1, num_classes=100, mode='original', loss_weight=1.0), | ||
num_classes=100)) | ||
|
||
# data | ||
data = dict(imgs_per_gpu=128, workers_per_gpu=8) # total 128*8=1024, 8 GPU linear cls | ||
|
||
# optimizer | ||
optimizer = dict(type='SGD', lr=12, momentum=0.9, weight_decay=0.) | ||
|
||
# learning policy | ||
lr_config = dict(policy='step', step=[60, 80]) | ||
|
||
# fp16 | ||
use_fp16 = True | ||
fp16 = dict(type='mmcv', loss_scale='dynamic') | ||
# optimizer args | ||
optimizer_config = dict(update_interval=1, grad_clip=None) | ||
|
||
# runtime settings | ||
runner = dict(type='EpochBasedRunner', max_epochs=90) |
33 changes: 33 additions & 0 deletions
33
configs/benchmarks/classification/stl10/deit_small_p16_linear_sz96_4xb128_cos_ep100.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
_base_ = [ | ||
'../_base_/models/deit_small_p16.py', | ||
'../_base_/datasets/stl10_swin_ft_sz96_8xbs128.py', | ||
'../_base_/default_runtime.py', | ||
] | ||
|
||
# MoCo v3 linear probing setting | ||
|
||
# model settings | ||
model = dict( | ||
backbone=dict(frozen_stages=12, norm_eval=True), | ||
head=dict( | ||
loss=dict(type='LabelSmoothLoss', | ||
label_smooth_val=0.1, num_classes=10, mode='original', loss_weight=1.0), | ||
num_classes=10)) | ||
|
||
# data | ||
data = dict(imgs_per_gpu=128, workers_per_gpu=8) # total 128*4=512, 4 GPU linear cls | ||
|
||
# optimizer | ||
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.) | ||
|
||
# learning policy | ||
lr_config = dict(policy='CosineAnnealing', min_lr=0.) | ||
|
||
# fp16 | ||
use_fp16 = False | ||
fp16 = dict(type='mmcv', loss_scale='dynamic') | ||
# optimizer args | ||
optimizer_config = dict(update_interval=1, grad_clip=None) | ||
|
||
# runtime settings | ||
runner = dict(type='EpochBasedRunner', max_epochs=100) |
19 changes: 19 additions & 0 deletions
19
configs/benchmarks/classification/stl10/r50_linear_sz96_4xb64_cos_ep100.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
_base_ = [ | ||
'../_base_/models/r50.py', | ||
'../_base_/datasets/stl10_sz96_4xbs64.py', | ||
'../_base_/default_runtime.py', | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
backbone=dict(frozen_stages=4), | ||
head=dict(num_classes=10)) | ||
|
||
# optimizer | ||
optimizer = dict(type='SGD', lr=1.0, momentum=0.9, weight_decay=0.) | ||
|
||
# learning policy | ||
lr_config = dict(policy='CosineAnnealing', min_lr=0.) | ||
|
||
# runtime settings | ||
runner = dict(type='EpochBasedRunner', max_epochs=100) |
19 changes: 19 additions & 0 deletions
19
configs/benchmarks/classification/stl10/r50_linear_sz96_4xb64_step_ep100.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
_base_ = [ | ||
'../_base_/models/r50.py', | ||
'../_base_/datasets/stl10_sz96_4xbs64.py', | ||
'../_base_/default_runtime.py', | ||
] | ||
|
||
# model settings | ||
model = dict( | ||
backbone=dict(frozen_stages=4), | ||
head=dict(num_classes=10)) | ||
|
||
# optimizer | ||
optimizer = dict(type='SGD', lr=1.0, momentum=0.9, weight_decay=0.) | ||
|
||
# learning policy | ||
lr_config = dict(policy='step', step=[60, 80]) | ||
|
||
# runtime settings | ||
runner = dict(type='EpochBasedRunner', max_epochs=100) |
Oops, something went wrong.