Skip to content

Customizing Visual-Language Foundation Models for Multi-modal Anomaly Detection and Reasoning

License

Notifications You must be signed in to change notification settings

Xiaohao-Xu/Customizable-VLM

Repository files navigation

Customizing Visual-Language Foundation Models for Multi-modal Anomaly Detection and Reasoning

image

ArXiv-Paper

Setup environment:

Install packages for your virtual environment:

pip install -r requirements.txt

Set up API keys for openai (Non-Free GPT-4Vision API Usage) and google (for Free Gemini Vision API Usage) on terminal or .bashrc:

export OPENAI_API_KEY=<your key>
export GOOGLE_API_KEY=<your key>

Dataset Preparation:

MVTecAD

Evaluation Scripts:

Eval on Gemini

python main_gemini.py --dataset "datasets/MVTecAD/vlm_for_ad_dataset.json" --cache "./output/answer_genmini.json" --output "./output/answer_5.json" --google_api_key 'ADD_YOUR_GOOLE_API_HERE’ --prompt_template “./prompt_template/ad_prompt.txt”

Eval on GPT4-Vision

python main_gpt.py --dataset "datasets/MVTecAD/vlm_for_ad_dataset.json" --cache "./output/answer_gpt4v.json" --output "./output/answer_gpt4v.json" --openai_api_key ‘ADD_YOUR_OPENAI_API_HERE’ --prompt_template “./prompt_template/ad_prompt.txt”

Eval on InternVL2

  • Follow the official guidance to set up the environment for InternVL2 and download the checkpoints. (By default, we used InternVL2-8B.)
python main_internvl2.py --model "~/path/to/InternVL2-8B" --dataset "datasets/MVTecAD/vlm_for_ad_dataset.json" --cache "./output/answer_internvl2_8b.json" --output "./output/answer_internvl2_8b.json"

Eval on Qwen2VL

  • Follow the official repo to set up the environment for Qwen2VL and download the checkpoints. (By default, we used Qwen2-VL-7B-Instruct.)
python main_qwenvl2.py --model "~/path/to/Qwen2-VL-7B-Instruct" --dataset "datasets/MVTecAD/vlm_for_ad_dataset.json" --cache "./output/answer_qwenvl2_7b.json" --output "./output/answer_qwenvl2_7b.json"

Citation

Please cite our paper if you find this repo useful! 💛 💙 💛 💙

@article{xu2024custimizing,
  title={Customizing Visual-Language Foundation Models for Multi-modal Anomaly Detection and Reasoning},
  author={Xu, Xiaohao and Cao, Yunkang and Chen, Yongqi and Shen, Weiming and Huang, Xiaonan},
  journal={arXiv preprint arXiv:2403.11083},
  year={2024}
}

Contact

If you have any question about this project, please feel free to contact xiaohaox@umich.edu

About

Customizing Visual-Language Foundation Models for Multi-modal Anomaly Detection and Reasoning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages