A tensorflow implementation of VGrow by using progressive growing method descriped in the following paper:
- Deep Generative Learning via Variational Gradient Flow.
- Progressive Growing of GANs for Improved Quality, Stability, and Variation.
- We only test our model on Linux.
- 64-bit Python 3.6 and Tensorflow 1.12.0
- When you want to generate higher resolution image than 128x128, We recommend GPU with at least 16GB memory.
- NVIDIA driver 384.145 or newer, CUDA toolkit 9.0 or newer, cuDNN 7.1.2 or newer. We test the code based on the following two configuration.
- NIVDIA driver 384.145, CUDA V9.0.176, Tesla V100
- NVIDIA driver 410.93 , CUDA V10.0.130, RTX 2080 Ti
We train VGrow-Pg model based on different f-divergence such as KL-divergence, JS-divergence, Jeffreys-divergence and our new proposed logD-divergence. Here we only show the complete process of progressive growing based on KL-divergence.
Resolution | 4x4 | 8x8 | 16x16 | 32x32 |
MNIST | ||||
Fashion-MNIST | ||||
CIFAR-10 |
Resolution | 4x4 | 8x8 | 16x16 |
CelebA | |||
Resolution | 32x32 | 64x64 | 128x128 |
CelebA |
We show all dataset final resolution results from each f-divergence.
KL-divergence | JS-divergence | Jeffreys-divergence | logD-divergence | |
MNIST | ||||
Fashion-MNIST | ||||
CIFAR-10 | ||||
LSUN-Bedroom |
We first generate 10,000 faces using the network trained with CelebA dataset and KL divergence. We use the age and gender classification networks provided in https://github.com/dpressel/rude-carnie for those generated faces, and then find a latent direction that controls these semantics. For example, we apply a logistic regression for gender and regard the normal of decision boundary as the direction.
We provide all arguments with default value and you can run this program with CIFAR-10 dataset by
bash cifar10.sh
. Training with other datasets is similar.
--gpu
: Specific GPU to use. Default:0
--dataset
: Training dataset. Default:mnist
--divergence
: f-divergence. Default:KL
--path
: Output path. Default:./results
--seed
: Random seed. Default:1234
--init_resolution
: Initial resolution of images. Default:4
--z_dim
: Dimension of latent vector. Default:512
--dur_nimg
: Number of images used for a phase. Default:600000
--total_nimg
: Total number of images used for training. Default:18000000
--pool_size
: Number of batches of a pool. Default:1
--T
: Number of loops for moving particles. Default:1
--U
: Number of loops for training D. Default:1
--L
: Number of loops for training G. Default:1
--num_row
: Number images in a line of image grid. Default:10
--num_line
: Number images in a row of image grid. Default:10
--use_gp
: Whether use gradient penalty or not. Default:True
--coef_gp
: Coefficient of gradient penalty. Default:1
--target_gp
: Target of gradient penalty. Default:1
--coef_smoothing
: Coefficient of generator moving average. Default:0.99
--resume_training
: Whether resume Training or not. Default:False
--resume_num
: Resume number of images. Default:0
The Portrait dataset is available at https://drive.google.com/file/d/1j_a2OXB_2rhaVqojzSPJLv_bDrSjHguR/view?usp=sharing
Gefei WANG, HKUST
Please feel free to contact Gefei WANG gwangas@connect.ust.hk or Prof. Can YANG macyang@ust.hk if any questions.