forked from swatipb/oceans-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcots_tracker.py
203 lines (179 loc) · 7.95 KB
/
cots_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Library to track COTS using detected bounding boxes."""
import abc
import cv2
import numpy as np
import service_pb2
from typing import Any, Dict
from collections import defaultdict
from object_detection.utils import np_box_ops
class Detection(abc.ABC):
def __init__(self, bounding_box, file_name, is_detected=True):
self.bounding_box = bounding_box
self.is_detected = is_detected
self.file_name = file_name
class RecentFrames(abc.ABC):
def __init__(self, max_frames):
self.frames = []
self.max_frames = max_frames
def insert_frame(self, frame_id):
if (len(self.frames)) > self.max_frames:
# Remove the oldest entry.
self.frames.pop(0)
self.frames.append(frame_id)
def get_frames(self):
return self.frames
def get_max_frames(self):
return self.max_frames
class CotsTracker(abc.ABC):
def __init__(self):
# See get_tracked_persons() for the format of the contents of this
# dictionary.
self.sequence_id_to_bbox = defaultdict(lambda: [])
self.sequence_id = 0
# Map from sequence id to number of objects linked to the sequence.
self.sequence_id_to_length = defaultdict(int)
self.min_iou = 0.4
# Keep track of last n processed frames.
self.recent_frames = RecentFrames(5)
self.reference_image = None
self.flow = None
self.image_width = 0
self.image_height = 0
def _increment_sequence_length(self, sequence_id):
self.sequence_id_to_length[sequence_id] += 1
def _generate_next_sequence_id(self):
# Returns an ID for newly tracked person."""
sequence_id = self.sequence_id
self.sequence_id += 1
return sequence_id
def get_iou(self, ground_truth, prediction):
return np_box_ops.iou(ground_truth, prediction)
def _track_object(self, bounding_box, used_sequences):
# Returns existing sequence id if object is tracked else returns -1
max_iou = 0
sequence_with_max_iou = None
for sequence_id, sequence_list in self.sequence_id_to_bbox.items():
if (sequence_id in used_sequences):
continue;
previous_bbox = sequence_list[-1].bounding_box
left = np.reshape(previous_bbox, (1, 4))
right = np.reshape(bounding_box, (1, 4))
iou = self.get_iou(left, right)
if (iou > max_iou):
max_iou = iou
sequence_with_max_iou = sequence_id
if max_iou > self.min_iou:
return sequence_with_max_iou
return -1
def remove_obsolete_sequences(self):
if (len(self.recent_frames.get_frames())
< self.recent_frames.get_max_frames()):
# Not enough frames have been processed.
return
recent_frames = set(self.recent_frames.get_frames())
sequence_ids_to_delete = []
for sequence_id, sequence_list in self.sequence_id_to_bbox.items():
recent_frame_matched_to_sequence = False
# Process detections in reverse order - most recent to oldest
for entry in reversed(sequence_list):
if entry.file_name in recent_frames and entry.is_detected:
recent_frame_matched_to_sequence = True
break
# No detections found for recent frames - stop propagating by deleting
# this sequence.
if not recent_frame_matched_to_sequence:
sequence_ids_to_delete.append(sequence_id)
for sequence_id in sequence_ids_to_delete:
print('Deleting sequence id:', sequence_id)
del self.sequence_id_to_bbox[sequence_id]
del self.sequence_id_to_length[sequence_id]
def get_projected_estimate_new_bounding_box(self, bbox, filename):
bbox_as_list = bbox.bounding_box.tolist();
point_y1 = bbox_as_list[0]
point_x1 = bbox_as_list[1]
point_y2 = bbox_as_list[2]
point_x2 = bbox_as_list[3]
fy1 = int(np.rint(np.clip(point_y1, 0, self.flow.shape[1])))
fx1 = int(np.rint(np.clip(point_x1, 0, self.flow.shape[0])))
fy2 = int(np.rint(np.clip(point_y2, 0, self.flow.shape[1])))
fx2 = int(np.rint(np.clip(point_x2, 0, self.flow.shape[0])))
point_y1 = point_y1 + abs(self.flow[fy1, fx1, 0])
point_x1 = point_x1 + abs(self.flow[fy1, fx1, 1])
point_y2 = point_y2 + abs(self.flow[fy2, fx2, 0])
point_x2 = point_x2 + abs(self.flow[fy2, fx2, 1])
# Prevent projected bbox from going outside image corners.
point_y1 = np.clip(point_y1, 0, self.image_height)
point_x1 = np.clip(point_x1, 0, self.image_width)
point_y2 = np.clip(point_y2, 0, self.image_height)
point_x2 = np.clip(point_x2, 0, self.image_width)
projected_bbox = np.array([point_y1, point_x1, point_y2, point_x2])
return Detection(projected_bbox, file_name=filename, is_detected=False)
def propagate_previous_detections(self, filename):
if not self.sequence_id_to_bbox:
return
id_to_projected_box = {}
for sequece_id, detections in self.sequence_id_to_bbox.items():
estimated_box = self.get_projected_estimate_new_bounding_box(
detections[-1], filename)
id_to_projected_box[sequece_id] = estimated_box
for sequece_id in self.sequence_id_to_bbox.keys():
self.sequence_id_to_bbox[sequece_id].append(
id_to_projected_box[sequece_id])
return
def process_frame(self, filename, detections, image, image_height,
image_width):
self.remove_obsolete_sequences()
self.recent_frames.insert_frame(filename)
frame_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
if self.reference_image is not None:
self.flow = cv2.calcOpticalFlowFarneback(prev=self.reference_image,
next=frame_gray, flow=self.flow,
pyr_scale=0.4, levels=1,
winsize=3,
iterations=2, poly_n=5,
poly_sigma=1.1, flags=0)
self.propagate_previous_detections(filename)
results = service_pb2.TrackerResults()
results.file_path = filename
if not detections:
return results
# Store mapping from sequence id to bounding boxes tracked in a single
# image. Assumption: Two detections within the same file cannot belong to
# the same sequence. Merge sequences detected in a file after tracking for
# objects detected in a image is complete.
new_sequence_id_to_bbox = {}
existing_sequence_id_to_bbox = {}
used_sequences = set()
for detection in detections:
tracker_result = results.tracker_results.add()
tracker_result.detection.CopyFrom(detection)
bounding_box = np.array([detection.top, detection.left,
detection.top + detection.height,
detection.left + detection.width])
current_detection = Detection(bounding_box, filename, True)
detection_sequence_id = self._track_object(bounding_box, used_sequences)
if detection_sequence_id == -1:
# Unable to link detection to existing sequence.
# Generate new sequence id and append detection.
detection_sequence_id = self._generate_next_sequence_id()
new_sequence_id_to_bbox[detection_sequence_id] = current_detection
else:
used_sequences.add(detection_sequence_id)
existing_sequence_id_to_bbox[detection_sequence_id] = current_detection
tracker_result.sequence_id = detection_sequence_id
self.sequence_id_to_length[detection_sequence_id] += 1
tracker_result.sequence_length = (
self.sequence_id_to_length[detection_sequence_id])
# Merge detections from this file into object map.
for key, value in new_sequence_id_to_bbox.items():
self.sequence_id_to_bbox[key].append(value)
for key, value in existing_sequence_id_to_bbox.items():
# Detection linked to an existing sequence. Replace last projected
# detection for identified sequence.
existing_detections = self.sequence_id_to_bbox[key]
existing_detections[-1] = value
self.sequence_id_to_bbox[key] = existing_detections
self.reference_image = frame_gray
self.image_height = image_height
self.image_width = image_width
return results