Terminal 1
python poller.py \
--watch_path=path/to/directory --output_file=path/to/output.csv \
--batch_size=8
Terminal 2 (On the same machine)
The script currently recognizes the models from TF OD API, or the ones that have the same signature.
python serving.py \
--model_path=path/to/saved_model --model_signature="serving_default"
To update the service proto python files, run
python -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. service.proto
The poller watches for the *.jpg
file additions in the specified directory.
When new files are added, it will add them to dataset and fetch an image per
second. This should be improved to match up with realtime performance
requirement.
The detector runs inference, and maintains gRPC endpoint to accept inference
requests and returning detection results. service.proto
defines the gRPC
service.
Simply measure the model's performance.
python benchmark.py \
--model_path=path/to/model --image_path=path/to/image/dir --batch_size=1 \
--model_signature="serving_default"
- Load management between poller and detector to achieve > 10fps performance.
- Dockerize (taeheej@)
- Tracker integration (swatisingh@)
- Performance optimizations (cheshire@)