Video splitting - ffmpeg -i data/zafra-videos/IMG_0263.MOV -c copy -map 0 -segment_time 30 -f segment data/videos-long/chunks/IMG_0263.MOV/output_video_%03d.mp4 Start segmentation - python demo.py --source data/example.jpg --device cpu bdd kaggle.josn {"username":"uom190055f","key":"11a39bb923bb951f08f52f78167605ab"} {"username":"uom190055f","key":"f356d3e522ef48d6f7b6704a8bb747ae"} model weights https://drive.google.com/file/d/1ggqh1Wc1T9zY4zN9BY4p-mTyq_dDtdEv/view?usp=sharing
To install Chrome:
download it using this command: wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
execute the downloaded installer: sudo apt install ./google-chrome-stable_current_amd64.deb
launch the browser: google-chrome
Later, I decided to make the default browser icon to launch google chrome, so I followed Grant Curell's answer, basically:
run xfce4-settings-manager find "Preferred Applications" under "Web Browser", click "Other..." type in /usr/bin/google-chrome
Drive folder FYP link https://drive.google.com/drive/folders/14tARLTnBGZKw-40RXfvOdeDGFLDtzx5M?usp=sharing
Regular sampling https://drive.google.com/file/d/1oUCwcqInKR5KcQh1lDvIJQLLnXV5kA60/view?usp=sharing DMS https://dms.uom.lk/s/HJmKfQgnB8LfyrW
Cheng Han, Qichao Zhao, Shuyi Zhang, Yinzi Chen, Zhenlin Zhang, Jinwei Yuan
-
August 30, 2022
: We've released the inference code / trained model and published web demo, just enjoy it ! -
August 24, 2022
: We've released the tech report for YOLOPv2. This work is still in progress and code/models are coming soon. Please stay tuned! ☕️
😁We present an excellent multi-task network based on YOLOP💙,which is called YOLOPv2: Better, Faster, Stronger for Panoptic driving Perception. The advantages of YOLOPv2 can be summaried as below:
- Better👏: we proposed the end-to-end perception network which possess better feature extraction backbone, better bag-of-freebies were developed for dealing with the training process.
- Faster
✈️ : we employed more efficient ELAN structures to achieve reasonable memory allocation for our model. - Stronger💪: the proposed model has stable network design and has powerful robustness for adapting to various scenarios .
We used the BDD100K as our datasets,and experiments are run on NVIDIA TESLA V100.
- Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo !
model : trained on the BDD100k dataset and test on T3CAIC camera.
Model | Size | Params | Speed (fps) |
---|---|---|---|
YOLOP |
640 | 7.9M | 49 |
HybridNets |
640 | 12.8M | 28 |
YOLOPv2 |
640 | 38.9M | 91 (+42) ⏫ |
Result | Visualization | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Result | Visualization | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Result | Visualization | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
You can get the model from here.
We provide two testing method.You can store the image or video.
python demo.py --source data/example.jpg
- YOLOPv2 NCNN C++ Demo: YOLOPv2-ncnn from FeiGeChuanShu
- YOLOPv2 ONNX and OpenCV DNN Demo: yolopv2-opencv-onnxrun-cpp-py from hpc203
YOLOPv2 is released under the MIT Licence.