Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Wen Gao.
Official PyTorch Code for "STAM: A SpatioTemporal Attention based Memory for Video Prediction" [paper]
- PyTorch 1.7
- CUDA 11.0
- CuDNN 8.0.5
- python 3.6.7
Create conda environment:
$ conda create -n STAM python=3.6.7
$ conda activate STAM
$ pip install -r requirements.txt
$ conda install pytorch==1.7 torchvision cudatoolkit=11.0 -c pytorch
Download repository:
$ git clone git@github.com:ZhengChang467/STAM_TMM.git
Unzip MovingMNIST Dataset:
$ cd data
$ unzip mnist_dataset.zip
set --is_training to False in configs/mnist.py and run the following command:
$ python STAM_run.py
set --is_training to True in configs/mnist.py and run the following command:
$ python STAM_run.py
We plan to share the train codes for other datasets soon!
Please cite the following paper if you feel this repository useful.
@article{chang2022stam,
title={STAM: A SpatioTemporal Attention based Memory for Video Prediction},
author={Chang, Zheng and Zhang, Xinfeng and Wang, Shanshe and Ma, Siwei and Gao, Wen},
journal={IEEE Transactions on Multimedia},
year={2022},
publisher={IEEE}
}
See MIT License