STAU (Extended from MAU, submitted to TPAMI)
Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Wen Gao.
Official PyTorch Code for "STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond" [paper]
- PyTorch 1.7
- CUDA 11.0
- CuDNN 8.0.5
- python 3.6.7
Create conda environment:
$ conda create -n STAU python=3.6.7
$ conda activate STAU
$ pip install -r requirements.txt
$ conda install pytorch==1.7 torchvision cudatoolkit=11.0 -c pytorch
Download repository:
$ git clone git@github.com:ZhengChang467/STAU.git
Unzip MovingMNIST Dataset:
$ cd data
$ unzip mnist_dataset.zip
Moving MNIST
$ python STAU_run.py --dataset mnist --is_training False
Bair Robot Pushing
$ python bash_bair_test.py
Moving MNIST
$ python STAU_run.py --dataset mnist --is_training True
Bair Robot Pushing
$ python bash_bair_train.py
We plan to share the train codes for other datasets soon!
Please cite the following paper if you feel this repository useful.
@article{chang2022stau,
title={STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond},
author={Chang, Zheng and Zhang, Xinfeng and Wang, Shanshe and Ma, Siwei and Gao, Wen},
journal={arXiv preprint arXiv:2204.09456},
year={2022}
}
See MIT License