Skip to content

ZhengChang467/STAU

Repository files navigation

STAU (Extended from MAU, submitted to TPAMI)

Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Wen Gao.

Official PyTorch Code for "STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond" [paper]

Requirements

  • PyTorch 1.7
  • CUDA 11.0
  • CuDNN 8.0.5
  • python 3.6.7

Installation

Create conda environment:

    $ conda create -n STAU python=3.6.7
    $ conda activate STAU
    $ pip install -r requirements.txt
    $ conda install pytorch==1.7 torchvision cudatoolkit=11.0 -c pytorch

Download repository:

    $ git clone git@github.com:ZhengChang467/STAU.git

Unzip MovingMNIST Dataset:

    $ cd data
    $ unzip mnist_dataset.zip

Test

Moving MNIST

    $  python STAU_run.py --dataset mnist --is_training False

Bair Robot Pushing

    $ python bash_bair_test.py

Train

Moving MNIST

    $ python STAU_run.py --dataset mnist --is_training True

Bair Robot Pushing

    $ python bash_bair_train.py

We plan to share the train codes for other datasets soon!

Citation

Please cite the following paper if you feel this repository useful.

@article{chang2022stau,
  title={STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond},
  author={Chang, Zheng and Zhang, Xinfeng and Wang, Shanshe and Ma, Siwei and Gao, Wen},
  journal={arXiv preprint arXiv:2204.09456},
  year={2022}
}

License

See MIT License

About

Extended from the previous work in NeurIPS2021

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages