Skip to content

ZhengChang467/STIPHR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STIP (extended from our previous work in CVPR2022)

Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Wen Gao.

Official PyTorch Code for "STIP: A Spatiotemporal Information-Preserving and Perception-Augmented Model for High-Resolution Video Prediction"

This work is extended from our previous work STRPM, which has been accepted by CVPR2022. The codes for STRPM have also been made public.

Requirements

  • PyTorch 1.7.1
  • CUDA 11.0
  • CuDNN 8.0.5
  • python 3.6.7

Installation

Create conda environment:

    $ conda create -n STIP python=3.6.7
    $ conda activate STIP
    $ pip install -r requirements.txt
    $ conda install pytorch==1.7 torchvision cudatoolkit=11.0 -c pytorch

Download repository:

    $ git clone git@github.com:ZhengChang467/STIPHR.git

Test on the ucfsports dataset

    $ python STIP_run.py --dataset ucfsport

Test on the Human3.6M dataset

    $ python STIP_run.py --dataset human36m

Test on the SJTU4K dataset

    $ python STIP_run.py --dataset sjtu4k

We plan to share the training soon!

Citation

Please cite the following paper if you feel this repository useful.

@article{chang2022strpm,
title={STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution Video Prediction},
author={Chang, Zheng and Zhang, Xinfeng and Wang, Shanshe and Ma, Siwei and Gao, Wen},
journal={arXiv preprint arXiv:2203.16084},
year={2022}
}

License

See MIT License

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages