Skip to content

wasmtime vulnerable to guest-controlled out-of-bounds read/write on x86_64

Critical severity GitHub Reviewed Published Mar 8, 2023 in bytecodealliance/wasmtime • Updated Mar 9, 2023

Package

cargo cranelift-codegen (Rust)

Affected versions

>= 0.84.0, < 0.91.1
>= 0.92.0, < 0.92.1
>= 0.93.0, < 0.93.1

Patched versions

0.91.1
0.92.1
0.93.1
cargo wasmtime (Rust)
>= 0.37.0, < 4.0.1
>= 5.0.0, < 5.0.1
>= 6.0.0, < 6.0.1
4.0.1
5.0.1
6.0.1

Description

Impact

Wasmtime's code generator, Cranelift, has a bug on x86_64 targets where address-mode computation mistakenly would calculate a 35-bit effective address instead of WebAssembly's defined 33-bit effective address. This bug means that, with default codegen settings, a wasm-controlled load/store operation could read/write addresses up to 35 bits away from the base of linear memory. Wasmtime's default sandbox settings provide up to 6G of protection from the base of linear memory to guarantee that any memory access in that range will be semantically correct. Due to this bug, however, addresses up to 0xffffffff * 8 + 0x7ffffffc = 36507222004 = ~34G bytes away from the base of linear memory are possible from guest code. This means that the virtual memory 6G away from the base of linear memory up to ~34G away can be read/written by a malicious module.

This out of bounds read/write is not semantically correct and poses a threat as an arbitrary read/write within ~34G of linear memory away from the base of a wasm module's linear memory. A guest module can, without the knowledge of the embedder, read/write memory in this region. The memory may belong to other WebAssembly instances when using the pooling allocator, for example. The memory may also belong to the embedder, depending on address layout.

Embedders do not have a necessarily reliable means of detecting when this happens. Wasm loads/stores are allowed to cause machine segfaults meaning that an invalid read/write would be translated to a nominal WebAssembly trap. This means that a malicious module in the worst case silently reads/writes memory outside its bounds and in the "best" case looks like a normal "something trapped here" during its execution. This makes it difficult to retroactively determine whether this bug has been exploited on hosts. Affected embedders are recommended to analyze preexisting wasm modules to see if they're affected by the incorrect codegen rules and possibly correlate that with an anomalous number of traps during historical execution to locate possibly suspicious modules.

The specific bug in Cranelift's x86_64 backend is that a WebAssembly address which is left-shifted by a constant amount from 1 to 3 will get folded into x86_64's addressing modes which perform shifts. For example (i32.load (i32.shl (local.get 0) (i32.const 3))) loads from the WebAssembly address $local0 << 3. When translated to Cranelift the $local0 << 3 computation, a 32-bit value, is zero-extended to a 64-bit value and then added to the base address of linear memory. Cranelift would generate an instruction of the form movl (%base, %local0, 8), %dst which calculates %base + %local0 << 3. The bug here, however, is that the address computation happens with 64-bit values, where the $local0 << 3 computation was supposed to be truncated to a 32-bit value. This means that %local0, which can use up to 32-bits for an address, gets 3 extra bits of address space to be accessible via this movl instruction.

The fix in Cranelift is to remove the erroneous lowering rules in the backend which handle these zero-extended expressions. The above example is then translated to movl %local0, %temp; shl $3, %temp; movl (%base, %temp), %dst which correctly truncates the intermediate computation of %local0 << 3 to 32-bits inside the %temp register which is then added to the %base value.

Patches

Wasmtime version 4.0.1, 5.0.1, and 6.0.1 have been released and have all been patched to no longer contain the erroneous lowering rules.

Workarounds

While updating Wasmtime is recommended, there are a number of possible workarounds that embedders can employ to mitigate this issue if updating is not possible. Note that none of these workarounds are on-by-default and require explicit configuration:

  • The Config::static_memory_maximum_size(0) option can be used to force all accesses to linear memory to be explicitly bounds-checked. This will perform a bounds check separately from the address-mode computation which correctly calculates the effective address of a load/store. Note that this can have a large impact on the execution performance of WebAssembly modules.
  • The Config::static_memory_guard_size(1 << 36) option can be used to greatly increase the guard pages placed after linear memory. This will guarantee that memory accesses up-to-34G away are guaranteed to be semantically correct by reserving unmapped memory for the instance. Note that this reserves a very large amount of virtual memory per-instances and can greatly reduce the maximum number of concurrent instances being run.
  • If using a non-x86_64 host is possible, then that will also work around this bug. This bug does not affect Wasmtime's or Cranelift's AArch64 backend, for example.

References

For more information

If you have any questions or comments about this advisory:

References

@alexcrichton alexcrichton published to bytecodealliance/wasmtime Mar 8, 2023
Published by the National Vulnerability Database Mar 8, 2023
Published to the GitHub Advisory Database Mar 9, 2023
Reviewed Mar 9, 2023
Last updated Mar 9, 2023

Severity

Critical

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Network
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Changed
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(56th percentile)

CVE ID

CVE-2023-26489

GHSA ID

GHSA-ff4p-7xrq-q5r8

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.