Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added priority and circular queue docs #47

Merged
merged 7 commits into from
Oct 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added docs/Queue/Circular-queue.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
304 changes: 304 additions & 0 deletions docs/Queue/CircularQueue.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,304 @@
---
id: circular-queue-in-dsa
title: Circular Queue Data Structure
sidebar_label: Circular Queue
sidebar_position: 3
description: "A circular queue is a linear data structure that operates on the First In First Out (FIFO) principle but utilizes a circular arrangement for its storage. This allows for efficient use of space and reduces the overhead associated with traditional linear queues."
tags: [dsa, data-structures, CircularQueue]
---

### Introduction to Circular Queue

A circular queue is a linear data structure that follows the First In First Out (FIFO) principle, similar to a regular queue. However, in a circular queue, the last position is connected back to the first position to form a circle. This circular arrangement allows for efficient use of space, as it enables the queue to utilize any free space created by dequeue operations without shifting elements.

![alt text](Circular-queue.png)

### Circular Queue Operations

1. **Enqueue**: Add an element to the back of the queue.
2. **Dequeue**: Remove the element from the front of the queue.
3. **Peek**: Retrieve the element at the front of the queue without removing it.
4. **isEmpty**: Check if the queue is empty.
5. **isFull**: Check if the queue is full.
6. **Size**: Get the number of elements in the queue.

### Pseudocode

#### Basic Operations

1. **Enqueue**:

```text
function enqueue(circularQueue, element):
if isFull(circularQueue):
return "Queue Overflow"
circularQueue.rear = (circularQueue.rear + 1) % circularQueue.size
circularQueue.elements[circularQueue.rear] = element
```

2. **Dequeue**:

```text
function dequeue(circularQueue):
if isEmpty(circularQueue):
return "Queue Underflow"
frontElement = circularQueue.elements[circularQueue.front]
circularQueue.front = (circularQueue.front + 1) % circularQueue.size
return frontElement
```

3. **Peek**:

```text
function peek(circularQueue):
if isEmpty(circularQueue):
return "Queue is empty"
return circularQueue.elements[circularQueue.front]
```

4. **isEmpty**:

```text
function isEmpty(circularQueue):
return circularQueue.front == circularQueue.rear
```

5. **isFull**:

```text
function isFull(circularQueue):
return (circularQueue.rear + 1) % circularQueue.size == circularQueue.front
```

6. **Size**:

```text
function size(circularQueue):
return (circularQueue.rear - circularQueue.front + circularQueue.size) % circularQueue.size
```

### Implementation in Python, C++, and Java

#### Python Implementation

```python
class CircularQueue:
def __init__(self, size):
self.size = size
self.elements = [None] * size
self.front = 0
self.rear = 0

def enqueue(self, element):
if self.is_full():
return "Queue Overflow"
self.rear = (self.rear + 1) % self.size
self.elements[self.rear] = element

def dequeue(self):
if self.is_empty():
return "Queue Underflow"
frontElement = self.elements[self.front]
self.front = (self.front + 1) % self.size
return frontElement

def peek(self):
if self.is_empty():
return "Queue is empty"
return self.elements[self.front]

def is_empty(self):
return self.front == self.rear

def is_full(self):
return (self.rear + 1) % self.size == self.front

def size(self):
return (self.rear - self.front + self.size) % self.size

# Example usage
cq = CircularQueue(5)
cq.enqueue(10)
cq.enqueue(20)
print(cq.dequeue()) # Output: 10
print(cq.peek()) # Output: 20
print(cq.is_empty()) # Output: False
print(cq.size()) # Output: 1
```

#### C++ Implementation

```cpp
#include <iostream>
using namespace std;

class CircularQueue {
private:
int *elements;
int front, rear, size;

public:
CircularQueue(int size) {
this->size = size;
elements = new int[size];
front = rear = 0;
}

void enqueue(int element) {
if (is_full()) {
cout << "Queue Overflow" << endl;
return;
}
rear = (rear + 1) % size;
elements[rear] = element;
}

int dequeue() {
if (is_empty()) {
cout << "Queue Underflow" << endl;
return -1; // Indicating underflow
}
int frontElement = elements[front];
front = (front + 1) % size;
return frontElement;
}

int peek() {
if (is_empty()) {
cout << "Queue is empty" << endl;
return -1; // Indicating empty
}
return elements[front];
}

bool is_empty() {
return front == rear;
}

bool is_full() {
return (rear + 1) % size == front;
}

int size_of_queue() {
return (rear - front + size) % size;
}

~CircularQueue() {
delete[] elements;
}
};

// Example usage
int main() {
CircularQueue cq(5);
cq.enqueue(10);
cq.enqueue(20);
cout << cq.dequeue() << endl; // Output: 10
cout << cq.peek() << endl; // Output: 20
cout << boolalpha << cq.is_empty() << endl; // Output: false
cout << cq.size_of_queue() << endl; // Output: 1
return 0;
}
```

#### Java Implementation

```java
public class CircularQueue {
private int[] elements;
private int front, rear, size;

public CircularQueue(int size) {
this.size = size;
elements = new int[size];
front = rear = 0;
}

public void enqueue(int element) {
if (is_full()) {
System.out.println("Queue Overflow");
return;
}
rear = (rear + 1) % size;
elements[rear] = element;
}

public int dequeue() {
if (is_empty()) {
System.out.println("Queue Underflow");
return -1; // Indicating underflow
}
int frontElement = elements[front];
front = (front + 1) % size;
return frontElement;
}

public int peek() {
if (is_empty()) {
System.out.println("Queue is empty");
return -1; // Indicating empty
}
return elements[front];
}

public boolean is_empty() {
return front == rear;
}

public boolean is_full() {
return (rear + 1) % size == front;
}

public int size_of_queue() {
return (rear - front + size) % size;
}

// Example usage
public static void main(String[] args) {
CircularQueue cq = new CircularQueue(5);
cq.enqueue(10);
cq.enqueue(20);
System.out.println(cq.dequeue()); // Output: 10
System.out.println(cq.peek()); // Output: 20
System.out.println(cq.is_empty()); // Output: false
System.out.println(cq.size_of_queue()); // Output: 1
}
}
```

### Complexity

- **Time Complexity**:

- Enqueue: $O(1)$
- Dequeue: $O(1)$
- Peek: $O(1)$
- isEmpty: $O(1)$
- isFull: $O(1)$
- Size: $O(1)$

- **Space Complexity**: $O(n)$, where $n$ is the number of elements that can be stored in the circular queue.

### Example

Consider a circular queue with the following operations:

1. Enqueue 10
2. Enqueue 20
3. Dequeue
4. Peek
5. Check if empty
6. Get size

**Operations**:

- Enqueue 10: Queue becomes [10, _, _, _, _]
- Enqueue 20: Queue becomes [10, 20, _, _, _]
- Dequeue: Removes 10, Queue becomes [_, 20, _, _, _]
- Peek: Returns 20, Queue remains [_, 20, _, _, _]
- isEmpty: Returns false
- Size: Returns 1

### Conclusion

A circular queue is an efficient data structure that improves the utilization of space in scenarios where a standard linear queue might lead to wasted memory due to the shifting of elements. It is widely used in applications such as CPU scheduling, resource sharing, and buffering tasks in operating systems. Understanding and implementing a circular queue can significantly enhance performance and memory management in various algorithms and systems.
Binary file added docs/Queue/Priority-queue.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Loading