Skip to content

akshayjoshii/Deep_Self-Supervised_Art_Style_Recognition

Repository files navigation

Saarland HLCV Project

Implementation of Auto Encoding Transformers for Art Style Recognition

Usage:

python3 main.py --mode=0 -F=tmp_data/cifar --choose=0 --lr=0.002 --lr1=0.1 --batch_size=128 --num_workers=4 --type=0 --KL_Lambda=1.0 --lambda=10.0 --lambda1=7.5 --lambda2=5.0 --lambda3=2.0 --lambda4=0.5 --max_lambda=1 --max_lambda1=0.75 --max_lambda2=0.5 --max_lambda3=0.2 --max_lambda4=0.05 --portion=0.005 --beta=75 --mix_mode=1 --Mixmatch_warm=50 --dataset=cifar10

Colab Commands:

!cp "/content/drive/My Drive/Dataset/train.pickle" "train.pickle" !cp "/content/drive/My Drive/Dataset/test.pickle" "test.pickle"

Param usage definitions (For CIFAR10)

python3 main.py -h --mode default:0, default mode to run -F training data path(Automatically download to this path) --choose use gpu id --lr default:0.002 learning rate for Adam optimizer for main backbone network --lr1 default:0.1 learning rate for SGD optimizer for AET regularization network --batch_size default:128 (Actually 256 is better, but one gpu can't support) --num_workers default:16 number of data loading workers for pytorch dataloader --type default:0 0:Wide ResNet-28-2, 1:Wide ResNet-28-2-Large --KL_Lambda default:1.0 hyper parameter for KL divergence to control consistency in the framework --lambda: warm factor for projective transformation AET regularization --lambda1: warm factor for affine transformation AET regularization --lambda2: warm factor for similarity transformation AET regularization --lambda3: warm factor for euclidean transformation AET regularization --lambda4: warm factor for CCBS transformation AET regularization --max_lambda: hyper-parameter for projective transformation in AET regularization. --max_lambda1: hyper-parameter for affine transformation in AET regularization. --max_lambda2: hyper-parameter for similarity transformation in AET regularization. --max_lambda3: hyper-parameter for eculidean transformation in AET regularization. --max_lambda4: hyper-parameter for CCBS transformation in AET regularization. --portion: specify the portion of data used as labeled data --beta: hyper parameter for the consistency loss in MixMatch part --mix_mode: default:1 specify to use Mosaic augmentation in MixMatch or not --Mixmatch_warm: warm factor for MixMatch beta hyper parameter --dataset: specify the dataset you will use for training

About

Implementation of Auto Encoding Transformers for Art Style Recognition

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •